
GPU acceleration of Monte Carlo

simulations: particle physics

methods applied to medicine

Marco Barbone, Rafael Brandt, Georgi Gaydadjiev, Alexander Howard, Wayne Luk, Mihaly Novak, Alex Tapper

m.barbone19@imperial.ac.uk

Motivation

• The medical community is starting to use GPUs to accelerate their
workloads

• HEP physics shows good results with GPUs

• Analyze the potential of GPU acceleration in the context of Monte Carlo
simulations

• Apply HEP-HPC concepts to medical workloads

• Considering both performance and engineering effort

• To improve the workflow for radiotherapy planning and feedback
leading also to real time adaptive radiotherapy

2

Problem statement: elastic scattering

A simulation of e-/e+ transport

considering only elastic scattering as

possible interactions described by

scattering of spin-less e-/e+ on an

exponentially screened Coulomb

potential

3Courtesy of the Geant4 collaboration

Monte Carlo Simulation

Many particles are simulated to

achieve statistical significance

4Source: Kotlarchyk M. Scattering theory. Encyclopedia of Spectroscopy and Spectrometry, 1999.

Scattered radiation

final position

GPU acceleration

5

Methodology

1. Analyze the parallelism available

2. Analyze problem cache and memory requirements

• GPUs have small cache, limited memory and no prefetcher

3. Model GPU performance and data transfer overhead

4. Draft the parallel solution

5. Analyze the engineering effort of the proposed solution

6. Implement the solution

6

Problem selection

The goal is to achieve high

throughput

The problem must be

embarrassingly parallel

7

Methodology

1. Analyze the parallelism available

2. Analyze problem cache and memory requirements

• GPUs have small cache, limited memory and no prefetcher

3. Model GPU performance and data transfer overhead

4. Draft the parallel solution

5. Analyze the engineering effort of the proposed solution

6. Implement the solution

8

✓

Design space exploration

9

Particles Clock (GHz) CUDA Cores Efficiency (0,1]

ASM

instructions Time (ms)

108 1.455 5,120 0.0625 2,500 537

108 1.455 5,120 0.0625 5,000 1,074

108 1.455 5,120 0.0625 10,000 2,148

Predicted 64-Cores CPU performance: 11,252 ms

Simulate the particles in parallel (independent)

Minimize data transfers

10Source: Kotlarchyk M. Scattering theory. Encyclopedia of Spectroscopy and Spectrometry, 1999.

Reduction

3D Histograms

Methodology

1. Analyze the parallelism available

2. Analyze problem cache and memory requirements

• GPUs have small cache, limited memory and no prefetcher

3. Model GPU performance and data transfer overhead

4. Draft the parallel solution

5. Analyze the engineering effort of the proposed solution

6. Implement the solution

11

✓

✓

✓

Experimental set-up

• Junior software engineers (computing master students' group 2 weeks)

– Parallel implementation

– GPU acceleration

• Senior software engineer (4 Hours)

– Optimizing the previous solutions

12

Test configuration

Hardware:

• 2x AMD EPYC 7551 32-Core Processor (2.0GHz)
• NVIDIA Tesla V100 PCIe 32GB (1.455 GHz)

Toolchain:

• GCC 9.3.1

• NVCC 11.6

• OpenMP

13

Test configurations (continued)

Simulation configuration:

• 100M histories

• 128 KeV beam

• Water

14

Validation histograms

15

It passes a KS-test

Junior developers results

• Parallel =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒
= 0.08

• GPU =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒

𝐺𝑃𝑈 𝑡𝑖𝑚𝑒
= 824

The parallel version achieves 2.5x speedup on an AMD Ryzen 5900x 12-cores
3.7GHz (4.8GHz) CPU

The student failed to identify false sharing

16

Problem

17

Solution

18

Senior developer results

• Parallel =
𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒

𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒
= 84.78

• GPU =
𝑆𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒

𝐺𝑃𝑈 𝑡𝑖𝑚𝑒
= 843.36

The more experienced developer achieved 1091x and 1.02x performance

increase compared to the junior developer

19

Optimizations

More involved optimizations (e.g. explicit shared memory use) did not further

improve GPU performance whilst greatly increasing engineering effort

20

CPU vs GPU results

• GPU =
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒

𝐺𝑃𝑈 𝑡𝑖𝑚𝑒
= 9.95

• GPU =
𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑡𝑖𝑚𝑒

𝐺𝑃𝑈 𝑡𝑖𝑚𝑒
= 47.8

21

100 M Particles

1B Particles

Conclusions

• GPUs can be orders of magnitude faster than CPUs in the context of Monte

Carlo simulations

• Parallel implementations can be harder to implement compared to GPU

implementations

• The usage of GPUs in the medical context can lead to real-time adaptive

radiotherapy

• Code available: https://github.com/DiamonDinoia/mcss/

22

https://github.com/DiamonDinoia/mcss/

