
Enabling continuous speedup of CMS Event Reconstruction
through continuous benchmarking

C. Caputo(1), on behalf of the CMS Collaboration
(1)Université catholique de Louvain

Introduction
The outstanding performances obtained by the CMS experiment during Run1 and Run2 represent a great achievement of seamless hardware and software integration. Among the different software parts, the CMS
offline reconstruction software is essential for translating the data acquired by the detectors into concrete objects that can be easily handled by the analyzers. The CMS offline reconstruction software needs to be
reliable and fast. The long shutdown 2 (LS2) elapsed between LHC Run2 and Run3 has been instrumental in the optimization of the CMS offline reconstruction software and for the introduction of new algorithms
reaching a continuous CPU speedup. In order to reach these goals, a continuous benchmarking pipeline has been implemented; CPU timing and memory profiling, using the igprof tool, are performed on a regular
basis to monitor the footprint of the new developments and identify the possible areas of performance improvement.

References

CMSSW Releases

[1] https://cms-sw.github.io/
[2] G. Benelli: The CMS software performance at the start of data taking, Nuclear Science Symposium Conference Record (NSS ‘08),
2008, doi:10.1109/NSSMIC.2008.4774926 (paper, slides).
[3] https://github.com/cms-sw/cmssw

- The overall collection of software, referred to as CMSSW [1-2], is built around a Framework, an Event Data
Model (EDM), and Services needed by the simulation, calibration and alignment, and reconstruction
modules that process event data so that physicists can perform analysis.

- The primary goal of the Framework and EDM is to facilitate the development and deployment of
reconstruction and analysis software.

- The CMSSW event processing model consists of one executable, called cmsRun, and many plug-in
modules which are managed by the Framework. All the code needed in the event processing
(calibration, reconstruction algorithms, etc.) is contained in the modules. The same executable is
used for both detector and Monte Carlo (MC) data.

- CMSSW development proceeds in “cycles”: each cycle is intended for a specific goal, i.e. MC production
campaign, data taking campaign, etc.

- Before being deployed, each cycle is in a “pre” phase, that can last ~3 months, where development that
change reconstruction algorithms can be integrated.

- Integration, review and testing of the new developments is performed on GitHub [3]
- On regular basis, a full build of the CMSSW release (pre-release) is lunched and validated

Be
nc

hm
ar

ki
ng

- Run detailed profiling jobs on a dedicated machine: Intel(R) Xeon(R) Silver 4216 CPU @
2.10GHz

- Reco, Mini, Nano steps with TimeMemoryInfo, igprof CPU, igprof MEM
- IgProf [4-6], the Ignominous Profiler, is a simple nice tool for measuring and

analysing application memory and performance characteristics.
- IgProf requires no changes to the application or the build process.
- web-navigable report: easy to navigate from one part of a call stack to another

- Profiling info analyzed and propagated to the web by a jenkins job

release-run-reco-
profiling

• TimeMemoryInfo
• igprof CPU
• igprof MEM

release-analyze-reco-profiling

• Compare CPU, MEM, eventSize with
previous pre-release

• produce igprof navigable report
• Upload everything to a dedicated

web site

CMSSW
pre-release

igprof

- 3 different conditions tested: Run3, Run3 T0-Like, Phase2

CPU Reconstruction Timing Summary Plots

Run-3

Run-3 T0-like

Phase-2

Run-3

Run-3 T0-like

Phase-2

- Measuring the performances (CPU timing, MEM, output size) for each pre-realese, both
globally and locally, allows us to identify criticality and define, in an objective and
quantify way, the next steps to embark on

- Improvements in the algorithms
- Identification of potential area of performance improvements
- guidance for future plans

[4] L. Tuura, V. Innocente, G. Eulisse: Analysing CMS software performance using IgProf, OProfile and callgrind, Proc. Computing In High
Energy And Nuclear Physics (CHEP07), Victoria, Canada, 2007, doi:10.1088/1742-6596/119/4/042030 (paper, slides).
[5] https://igprof.org/
[6] https://github.com/igprof/igprof

Reco Timing

Reco EventSize

CPU Timing Comparisons (per module)

Tools and flow

Guidances for the future

https://igprof.org/
https://github.com/igprof/igprof
https://cms-sw.github.io/

