
Secrets Management for CMSWEB
Aroosha Pervaiz, Muhammad Imran, Valentin Y Kuznetsov, Panos Paparrigopoulos,

Spyridon Trigazis, Andreas Pfeiffer.
CMS Offline & Computing, CMS, CERN, Switzerland.

Cyber attacks are inevitable.
• Secret Management enables us to:

– Centralize the management of our sensitive data, including
certificates, database credentials, and API Keys.

– Protect the integrity of our system.

– Properly distribute secrets among the organization without
compromising confidentiality.

• We explored different secret management strategies, such as:

– HashiCorp Vault

– Github Credentials

– SOPs with Age

• In this poster, we discuss the process by which we investigated
these strategies and perform a feasibility analysis between them.

• We chose SOPS with age as a solution as it satisfies our require-
ments.

Motivation
• Only the operators maintained all CMSWEB services and cluster

secrets in a secure place.

– In case the responsible person is unreachable, we could be
locked out from re-deploying our services.

* The potential of this issue was highlighted by the re-
cent incident at CERN IT when a few k8s clusters were
deleted by the cleanup tool accidentally.

– This incident prompted us to urgently improve our proce-
dures for secrets management.

Feasibility Analysis
• Increasing the security robustness increases the complexity.

Extensive features

CERN SSO integration

Complex con�guration
Requirements

Added dependency

Secure authentication
mechanism
More focus on git
credentials
Authentication
managed by GitHub

HashiCorp Vault Git Credentials

Requires changes in
services manifest �les

Di�cult to distribute
credentials around the
organization

Multiple libraries with age being
simplest
Separate key for each group

Keys can be distributed
through OpenStack or Git

Integrated in Helm

Mozilla SOPS/age

Allows us to encrypt secrets and
store them directly on git

Easy to integrate with bash
scripts

Does not allow for dynamic
secret management

Illustration
• We developed bash scripts to incorporate SOPS with age to en-

crypt and decrypt secrets.

./scripts/encrypt-secrets.sh
<namespace> <full-path-to-

services-secret-file>

./scripts/decrypt-secrets.sh
<namespace> <full-path-to-services-

secret-file>

2. Encrypt the secrets using sops �le.

6. Decrypt the secrets using sops �le.

User 1 User 2

1. Get 'age key' from the secrets
deployed in the cluster.

3. Commit and push to the git repository. 4. Pull from the git repository.

5. Get 'age key' from the secrets
deployed in the cluster.

Figure 1: This flow explains how the encryption and decryption of secrets is
facilitated by SOPS/age.

<namespace>

Pod 1 Pod 2 Pod 3

./scripts/deploy-keys-secrets.sh <namespace> <full-
path-to-secret-key-file>

./scripts/deploy-secrets.sh <namespace> <service-
name> <path_to_configuration>

1. The admin deploys the keys which can
be used to encrypt and decrypt secret

�les using sops and age.

2. The users can now use deploy-
secrets.sh to install encrypted or
decrypted secrets.

Figure 2: In order to deploy secrets, which are encrypted, we need to first de-
ploy the key secrets. These keys are required to decrypt the original encrypted
secret.

Conclusion and Future Work
• CMSWeb has adopted the use of SOPS with age, and we also rec-

ommend this to all interested CMS groups.

• Since the deployment of the secret is directly incorporated in the
services deployment script, it makes the whole procedure seam-
less.

• Detailed documentation on how to install and use these tools has
already been created.

• We developed bash scripts to automate the deployment of the se-
crets using encryption/decryption with SOPS/age.

• In the future, we will incorporate this methodology in helm
charts.

