
Adoption of the alpaka performance portability library

in the CMS software
ACAT 2022 – October 27th, 2022

Andrea Bocci1, Eric Cano1, Antonio Di Pilato2,
Gabrielle Hugo1, Vincenzo Innocente1, Matti Kortelainen3,

Felice Pantaleo1, Wahid Redjeb1,4, Marco Rovere1

1 CERN, 2 CASUS, 3 FNAL, 4 RWTH

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 2 / 17

motivation #1

why use GPUs for high energy physics event reconstruction ?

● event reconstruction is a very parallel problem, at multiple levels
● events are independent: reconstruct multiple events
● part of the reconstruction are independent: run different algorithms
● many tasks can be expressed using parallel algorithms and data structures:

– e.g. detector data "unpacking", fitting and calibration, clustering, track building and fitting, etc.

● parallel algorithms have some additional problems with respect to serial ones
● more complicated to design and implement efficiently

– e.g. divergences in the parallel execution may lead to suboptimal performance

● undefined order of execution may produce results that are not fully reproducible
– e.g. in combinatorial algorithms and reductions

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 3 / 17

a concrete application

● CMS High Level Trigger reconstruction
● fully integrated in the CMSSW framework (can be reused also for offline reconstruction, though only for a small fraction of it)
● validated offline on GPU-equipped nodes on CMS Tier-2s
● deployed in production from the beginning of LHC Run-3 data taking
● commissioned and optimised in the past few months
● if you missed it, see the poster by Marc Huwiler,

Commissioning CMS online reconstruction with GPUs

● with the deployment of a GPU-equipped HLT farm:
● 70% better event processing throughput
● 50% better performance per kW
● 20% better performance per cost

● work is ongoing to rewrite more algorithms to run on GPUs:
● particle flow clustering: see the poster presented by Felice Pantaleo,

Particle Flow Reconstruction on Heterogeneous Architecture for CMS
● full primary vertex reconstruction: see the poster presented by Adriano Di Florio,

Primary Vertex Reconstruction for Heterogeneous Architecture at CMS
● etc.

-40% time / event

CMS Preliminary 13.6 TeV

https://indico.cern.ch/event/1106990/contributions/4991283/attachments/2533710/4360071/HLT_GPU_Poster_MH_final.pdf
https://fpantale.web.cern.ch/fpantale/acat2022/PFonGPU.html
https://giorgiopizz.github.io/poster-acat2022/
https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 4 / 17

how did we get there ?

● 2016: first concrete interest in using (NVIDIA) GPUs for offloading reconstruction algorithms
● 2017: first CUDA code for Pixel local reconstruction
● 2018: continuous R&D activities

● data structures, memory allocation strategies, caching and reuse
● CUDA-based algorithms

● 2019: optimisations and debugging
● more CUDA-based algorithms
● first work on GPU-to-CPU code portability (“cudacompat”)

● 2020: upstream integration
● support for Run-3 and Phase-2 workflows
● better integration with the HLT menu
● improved compatibility

– GPU vs CPU workflows

– automatic offloading when GPUs are available

– improve multi-GPU support

● 2021: integration and adoption at HLT

NVIDIA GTC
(2018)

ACAT 2019

CHEP 2019ACAT
2021

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 5 / 17

motivation #2

why do we care about performance portability ?

● on CPUs, we have been writing portable C++ code for a long time
● single source, compiled for different architectures
● target x86 CPUs (32 bit, then 64 bit), Power CPUs, ARM CPUs

● so far in CMS we have been using only NVIDIA GPUs, through the native CUDA API
● how do we run code written for GPUs on CPUs, e.g. for running it offline where GPUs are not yet widespread ?

● present solutions …
● in-house wrappers, and a lot of #ifdef __CUDA_ARCH__ scattered through the code
● good ol’ code duplication

● adoption of GPUs from other vendors in HPCs is increasing
● LUMI, in Kajaani, Finland, and Frontier, at Oak Ridge, US, use AMD MI250X GPUs
● Aurora, at Argonne National Laboratory, US, will use Intel Xe GPUs

● can we target CPUs and GPUs from different vendors with a single code base ?

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 6 / 17

performance portability ?

● wide variety in computing architectures
● CPUs (x86, ARM, Power, …)
● GPUs (NVIDIA, AMD, soon Intel, …)
● possibly FPGAs, or other dedicated hardware

● writing algorithms for each new backends requires a large investment
● different programming tools (C++ vs CUDA vs ROCm vs SYCL vs …)
● different algorithms (e.g. serial, branchy CPU code would have horrible performance on GPUs)
● duplication of development, validation, and maintenance efforts

● a better approach: performance portability frameworks
● abstract parallel programming models
● expose the underlying details when necessary
● (almost) native performance on different hardware

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 7 / 17

performance portability ?

 okkos

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 8 / 17

what is alpaka ?

● alpaka is a header-only C++17 abstraction library for accelerator development
● it aims to provide performance portability

across accelerators through the abstraction
of the underlying levels of parallelism

● it currently supports
● CPUs, with serial and parallel execution
● GPUs by NVIDIA, with CUDA
● GPUs by AMD, with HIP/ROCm
● support for Intel GPUs and FPGAs is

under development, based on oneAPI

● it is easy to integrate with the CMSSW plug-in architecture
● write code once, let the build system target multiple backends
● a single application supports all these different backends at the same time

● for more information, see the poster by Jan Stephan, Performance portability with alpaka

https://indico.cern.ch/event/1106990/contributions/4991359/attachments/2536266/4365101/Poster.pdf
https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 9 / 17

● it is production-ready today !
● support all hardware CMS consider supporting
● open source project, easy to contribute to

● header-only library, easy to integrate in the CMS framework
● support multithreading in the host application
● support multiple targets in a single build

– GPUs from different vendors and different generations

– CPUs with different execution modes, e.g. parallel execution using TBB

● evaluated in the Patatrack pixel-only standalone reconstruction
● running on an AMD EPYC “Milan” 7763 CPU (64 cores / 128 threads SMT)
● running on an NVIDIA Tesla T4 GPU

● good performance on the current hardware:
CPUs and NVIDIA GPUs

● today’s software: Pixel reconstruction
● Phase-2 reconstruction - check Monday's talk by Tony Di Pilato,

Performance study of the CLUE algorithm with the alpaka library

why alpaka ?

Patatrack Preliminary 13 TeV

Patatrack Preliminary 13 TeV

NVIDIA Tesla T4 GPU

AMD EPYC Milan 7763 CPU
64 cores / 128 threads (SMT)

https://github.com/alpaka-group/alpaka/
https://github.com/cms-patatrack/pixeltrack-standalone/
https://indico.cern.ch/event/1106990/contributions/4998189/attachments/2533381/4360834/Performance%20study%20of%20the%20CLUE%20algorithm%20with%20the%20alpaka%20library.pdf
https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 10 / 17

CMS contributions to alpaka

● contribute to the upstream project:
● asynchronous memory allocations,

on backends that support them
– cudaMallocAsync()/ cudaFreeAsync()

– CUDA ≥ 11.2, CPUs

● more efficient atomic operations on CPUs
– boost::atomic_ref vs std::mutex

● support for scalar buffers with a single element
● user friendly syntax for accessing buffers’ content:

– *buffer, buffer->member, buffer[i]

● more flexible support for CUDA and HIP
– support for CUDA and HIP host APIs with a standard compiler

– support for CUDA and HIP targets in a single build

● bug fixes, improvements to the tests, etc.

Impact of using stream-ordered, asynchronous memory
operations, running on an NVIDIA Tesla T4 GPU.

NVIDIA Tesla T4 GPU

async memory allocation give
+270% throughput

Patatrack Preliminary 13 TeV

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 11 / 17

CMS developments on top of alpaka

● caching and runtime improvements on top of alpaka
● caching memory allocator inspired by

CUB's cub::CachingDeviceAllocator
– implement queue-ordered, asynchronous semantics also

for backends that do not support it natively (HIP, SYCL)

– support global device memory and pinned host memory

● caching and reuse of queues (e.g. CUDA streams)
and events, to avoid the expensive construction
and destruction of the underlying objects

● various parallel_for-like wrappers using either indices or
lambdas for strided block and grid loops

● more efficient host tasks for CUDA callbacks

● currently, these utilities are integrated in CMSSW code
● once they are stable, we will consider what makes sense to keep

in CMSSW, upstream to Alpaka, or move to a separate library

Impact of using a caching allocator for global device memory
and pinned host memory, running on an NVIDIA Tesla T4 GPU.

NVIDIA Tesla T4 GPU

caching allocators give +25% throughput

Patatrack Preliminary 13 TeV

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 12 / 17

alpaka in CMSSW: backends

● in CMSSW we tie together the Device, Queue, Event and Accelerator types in a “backend”
● each backend is associated to a namespace

● synchronous execution on the CPU, with a single thread:

● asynchronous execution on a GPU, with a grid of blocks and threads:

namespace alpaka_serial_sync {

 using Platform = alpaka::PltfCpu;

 using Device = alpaka::DevCpu;

 using Queue = alpaka::QueueCpuBlocking;

 using Event = alpaka::EventCpu;

 template <typename TDim> using Acc = alpaka::AccCpuSerial<TDim, uint32_t>;

}

namespace alpaka_cuda_async {

 using Platform = alpaka::PltfCudaRt;

 using Device = alpaka::DevCudaRt;

 using Queue = alpaka::QueueCudaRtNonBlocking;

 using Event = alpaka::EventCudaRt;

 template <typename TDim> using Acc = alpaka::AccGpuCudaRt<TDim, uint32_t>;

}

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 13 / 17

files and directory structure

● to support the compilation of Alpaka -based plugins and libraries for multiple backends,
we have introduced a new directory structure ad a new file type:

● alpaka/ subdirectories under interface/, src/, plusings/ or test/
● *.dev.cc files

DataFormats/PortableTestObjects/
├── BuildFile.xml
├── README.md
├── interface/
│ ├── TestHostCollection.h
│ ├── TestSoA.h
│ └── alpaka/
│ └── TestDeviceCollection.h
└── src/
 ├── alpaka/
 │ ├── classes_cuda.h
 │ ├── classes_cuda_def.xml
 │ ├── classes_serial.h
 │ └── classes_serial_def.xml
 ├── classes.h
 └── classes_def.xml

HeterogeneousCore/AlpakaTest/
├── plugins/
│ ├── BuildFile.xml
│ ├── TestAlpakaAnalyzer.cc
│ └── alpaka/
│ ├── TestAlgo.dev.cc
│ ├── TestAlgo.h
│ ├── TestAlpakaProducer.cc
│ └── TestAlpakaTranscriber.cc
└── test/
 ├── BuildFile.xml
 ├── reader.py
 ├── testHeterogeneousCoreAlpakaTestWriteRead.sh
 └── writer.py

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 14 / 17

alpaka/ directories

● *.dev.cc files by the device compiler
● for example, nvcc 11.5
● what is available:

– the host side API of the selected accelerator:
e.g. cudaMemcpyAsync(…)

– device code:
e.g. __global__ void kernel() { … }

– kernel launches:
e.g. kernel<<<blocks, threads>>>(…);

● what is discouraged
– access to ROOT and the full CMSSW framework

● *.cc files by the host compiler
● for example, gcc 10.2
● what is available:

– standard C++ functionality, e.g. ROOT and CMSSW
framework

– the host side API of the selected accelerator:
e.g. cudaMemcpyAsync(…)

● what is not allowed:
– device code:

e.g. __global__ void kernel() { … }

– kernel launches:
e.g. kernel<<<blocks, threads>>>(…);

● all code under the …/{src,plugins,test}/alpaka/ directories is compiled multiple times
● into a separate shared library for a each backend

– isolate compile-time and run-time dependencies, minimise code loaded at runtime

● defining the ALPAKA_ACCELERATOR_NAMESPACE macro to the corresponding backend namespace
– automate using the correct types, avoid symbol clashes

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 15 / 17

goal: move to alpaka for 2023 data taking

A solid plan ahead !

● September 2022:
• Alpaka framework and generic data structures in CMSSW

• kickstart the migration

● November 2022:
● Pixel and Tracking code ported to Alpaka

● December 2022 – next CMSSW release:
● ECAL code ported to Alpaka
● Pixel and Tracking configuration and validation updated
● central validation of the Pixel and Tracking migration

at the same time, adopt a common set of data structures
● see the poster by Eric Cano, Implementation of

generic SoA data structure in the CMS software

● January 2023:
● HCAL code ported to Alpaka
● ECAL configuration and validation updated
● central validation of the ECAL migration

● February 2023 - CMSSW release for data taking:
● HCAL configuration and validation updated
● central validation of the HCAL migration

● March 2023
● final validation, switch to Alpaka by default

● following release cycle:
● port other GPU code targeting Run-3 to Alpaka
● drop CUDA code, keep only Alpaka code, at least for Run-3

https://indico.cern.ch/event/1106990/contributions/4991308/attachments/2534282/4361161/Implementation%20of%20generic%20SoA%20data%20structure%20in%20the%20CMS%20software.pdf
https://indico.cern.ch/event/1106990/contributions/4991308/attachments/2534282/4361161/Implementation%20of%20generic%20SoA%20data%20structure%20in%20the%20CMS%20software.pdf
https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 16 / 17

11th Patatrack Hackathon

… kickstarted by a dedicated hackathon !

https://creativecommons.org/licenses/by-sa/4.0/

Questions ?

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 19 / 17

alpaka core concepts

Platform and Device
● identify the type of hardware (e.g. NVIDIA GPUs) and individual devices (e.g. each single GPU) present on

the machine
● the DevCpu device serves two purposes:

– as the “host” device, for managing the data flow (e.g. perform memory allocation and transfers, run EDProducer, etc.)

– as an “accelerator” device, for running heterogeneous code (e.g. to run an algorithm on the CPU)

● platforms cannot be instantiated, and are only used as a type
● devices should be created at the start of the program and used consistently

owning Buffer and non-owning View
● point to a scalar or a N-dimensional array in host or device memory
● scalars and 1-dimensional arrays can be accessed with the pointer *, -> and array [] operators
● on device that support it, the buffer allocations/deallocations can use a queue-ordered semantic

nota bene: all Alpaka objects behave like shared_ptrs, and should be passed by value or by const&

https://creativecommons.org/licenses/by-sa/4.0/

October 27th, 2022 A. Bocci - Adoption of the alpaka performance portability library in the CMS software 20 / 17

alpaka core concepts

Queues and Events
● queues identify a work queue where tasks (memory ops, kernel executions, …) are executed in order

– for example, a queue could represent an underlying CUDA stream or a CPU thread

● queues can be sync(hronous or blocking) or async(hronous or non-blocking)
– work submitted to a sync queue is executed immediately, before returning to the caller

– work submitted to an async queue is executed in the background, without waiting for its completion

● events identify points in time along the work queue
– can be used to query or wait for the readiness of a task submitted to a queue

● queues and events are always associated to a specific device

Accelerator
● encapsulates the execution policy on a specific device

– N-dimensional work division (1D, 2D, 3D, …)

– on CPU: serial vs parallel execution of the “blocks” (single thread, multi-threads, TBB tasks, …)

● accelerators are created any time a kernel is executed, and can be used in device code to extract the
execution configuration

https://creativecommons.org/licenses/by-sa/4.0/

