
HEP-CCEHEP-CCE

Portable Programming Model Exploration
for LArTPC Simulation: OpenMP vs. SYCL

Zhihua Dong, Meifeng Lin, Vincent Pascuzzi, Brett Viren,
Tianle Wang, Haiwang Yu

Brookhaven National Laboratory
Kyle Knoepfel

Fermilab

For HEP-CCE

ACAT2022, 23–28 Oct 2022

HEP-CCE

Motivation
● Current and future HPC systems increasingly

feature (different kinds of) compute
accelerators (GPUs, FPGAs, etc.)

● There are now three major GPU vendors:
NVIDIA, Intel and AMD. Hardware architectures
are similar, but the native programming models
supported are different:

○ NVIDIA - CUDA
○ Intel - SYCL
○ AMD - ROCM/HIP

● Future experiments (HL-LHC, DUNE, …)
anticipate an order of magnitude higher
compute and data processing needs.

● Most experimental HEP codes do not support
GPU computing. CPU-only processing model
may not be sufficient.

● Can we rewrite the CPU codes to be portable
across different GPU architectures? Aurora (ALCF, US, upcoming)

Perlmutter (NERSC, US)

Frontier (OLCF, US)

NVIDIA GPUs

Intel GPUs AMD GPUs

2

AMD GPUs

LUMI (CSC, Europe)

HEP-CCE

HEP-CCE and Portable Parallelization Strategies
● Kokkos: a C++ abstraction layer (library) that

supports parallel execution for different host and
accelerator architectures.

● SYCL: a specification for a cross-platform C++
abstraction layer.

● OpenMP/OpenACC: Directive-based programming
models for different host and accelerator
architectures

● Alpaka: C++ abstraction layer similar to Kokkos

● std::par: language-based parallelism from C++
Standard

● HIP: originally an abstraction layer for CUDA and
ROCM. Being extended to also support OneAPI.

3

HEP-CCE involves four US labs, six experiments.
Salman Habib (ANL) PI, Paolo Calafiura (LBNL) co-PI

More details: CCE-PPS Overview Poster on
Wednesday: https://indi.to/k7Bsk

https://indi.to/k7Bsk

HEP-CCEHEP-CCE 4

Liquid Argon TPC (LArTPC) and Wire-Cell Toolkit

DUNE

LArTPC Signal Formation

LArTPC is a key detector technology for
many next-gen neutrino experiments

● rich and precise topology info.
● calorimetry info.

Wire-Cell Toolkit (WCT) is a software package initialized
for LArTPC

● algorithms: simulation, signal processing,
reconstruction and visualization.

● data-flow programming paradigm
● modular design; can port different modules

relatively independently
● works in both standalone mode and as plugin of

LArSoft
● https://github.com/WireCell/wire-cell-toolkit

LArSoft is a C++ software framework for many neutrino
experiments using LArTPCs

● modular design
● infrastructures + algorithms
● central hub of the LArTPC software community
● https://larsoft.org/

https://github.com/WireCell/wire-cell-toolkit
https://larsoft.org/

HEP-CCEHEP-CCE

Three major steps of LArTPC simulation with Wire-Cell - a representative workflow
1. Rasterization: depositions ⟶ patches (small 2D array, ~20×20)

○ # depo ~100k for cosmic ray event
2. Scatter adding: patches ⟶ grid (large 2D array, ~10k×10k)
3. FFT: convolution with detector response

rasterization and scatter adding Convolution theorem:
convolution in time/space domain

multiplication in frequency domain

5

Wire-Cell Simulation Major Steps

HEP-CCEHEP-CCE

Two stage porting strategy
1. Started with partial CUDA porting [1]: Only

rasterization part was ported to GPU
a. Feasibility test and baseline

performance
b. Not performant

2. Full porting [2]: All three components ported to
GPU

a. more workloads for parallelization
b. batched device-host data transfer

6

Recap: Kokkos Porting Strategies and Results

Partial Porting

Full Porting
References:
[1] Z. Dong, K. Knoepfel, M. Lin, B. Viren, H. Yu and K. Yu, vCHEP
2021, arXiv: 2104.08265
[2] Z. Dong, K. Knoepfel, M. Lin, B. Viren, H. Yu and K. Yu, ACAT
2021 poster, arXiv:2203.02479

HEP-CCEHEP-CCE 7

Kokkos, SYCL and OpenMP
SYCL is a programming model and (Khronos) standard that brings support for heterogeneous programming to C++ .
Single source , different backend enable parallel execution on a range of hardwares CPUs GPUs, DSPs, FPGAs…

OpenMP is an API for multithreading, and it starts to support “target offloading” on heterogeneous architectures since
OpenMP 4.0. It now supports several programming and memory models, including shared-memory parallelism, task
parallelism, and host-device heterogeneous computing.

 1 #include <CL/sycl.hpp>
 2
 3 int main() {
 4 cl::sycl::queue Queue;
 5 unsigned long N=1024*1024 ;
 6 float a_h[N] ;
 7 auto a_d=cl::sycl::malloc_device<float>(N,Queue)
;
 8 Queue.parallel_for(
 9 cl::sycl::range<1>(N), [=](auto item) {
 10 int id = item.get_id(0) ;
 11 a_d[id] = cl::sycl::sqrt((float)id) ;
 12 });
 13 Queue.wait() ;
 14 Queue.memcpy(a_h, a_d, N*sizeof(float)).wait() ;
 15
 16 }
 17

 1 #include <Kokkos_Core.hpp>
 2
 3 int main() {
 4 Kokkos::initialize(argc, argv);
 5 {
 6 unsigned long N=1024*1024 ;
 7 typedef Kokkos::View<double*> ViewVectorType;
 8 ViewVectorType a_d("A", N);
 9 Kokkos::parallel_for("A2" , N, KOKKOS_LAMBDA (int i) {
 10 a_d[i] = sqrt((double)i) ;
 11 });
 12 Kokkos::fence();
 13 auto a_h = Kokkos::create_mirror_view(a_d);
 14 Kokkos::deep_copy(a_h, a_d, N*sizeof(double)) ;
 15
 16 }
 17 Kokkos::finalize() ;
 18 }

SYCL Kokkos OpenMP

HEP-CCEHEP-CCE 8

Porting Wire-Cell-Gen to SYCL

● SYCL syntax is very similar to Kokkos. Porting from Kokkos is straightforward.
● Create Array1D, Array2D classes (pointer and sizes with a few methods) to replace

KokkosArray (wrapper of Kokkos::view) —-> Minimum code change.

Kokkos::deep_copy(sps_f, spf_h);
auto sp_ts =
KokkosArray::idft_cr(sp_fs,1) ;

sp_fs.copy_from(sps_h);
auto sp_ts =
SyclArray::idft_cr(sp_fs,1) ;

Strategies:

● SYCL does not have a portable RNG as Kokkos.
○ We wrote a wrapper for optimized libraries (cuRAND,rocRAND,random123 for CPU)

https://github.com/GKNB/test-benchmark-OpenMP-RNG.git (Tianle Wang)
● FFT part is similar to Kokkos. We wrote a wrapper for vendor-optimized FFT libraries

(cuFFT,rocFFT, host original based on FFTW)

Things to be careful about:
● SYCL kernels and memory operation always async by default, e.g. sycl::memcpy()
● Some Kokkos functions put extra fence e.g. deep_copy()

Zhihua Dong

https://github.com/GKNB/test-benchmark-OpenMP-RNG.git

HEP-CCEHEP-CCE 9

Porting Wire-Cell-Gen to OpenMP

● When porting using OpenMP, we simply add #pragma for data movement and kernel,
we don’t need to change the CPU code a lot.

● However, the original CPU code is not suitable for GPU, so we port from the Kokkos
implementation.

● Use one dimensional array to represent all the data.
● Manually perform data movement using #pragma omp target data map to remove

unnecessary data movement and lower peak memory usage.
● OpenMP does not support GPU scan (prefix) operation, so we do padding, at the cost of

small extra memory.
● OpenMP does not have RNG as Kokkos, we use wrapper

(cuRAND,rocRAND,random123)
https://github.com/GKNB/test-benchmark-OpenMP-RNG.git

● For FFT, similar to Kokkos and SYCL, we use a wrapper for cuFFT,rocFFT and FFTW.
● Use #pragma omp atomic for scattering add.

Strategies:

Tianle Wang

https://github.com/GKNB/test-benchmark-OpenMP-RNG.git

HEP-CCEHEP-CCE 10

Benchmarking SYCL vs. Kokkos vs. OpenMP
Hardware Platform: SYCL, Kokkos and OpenMP versions of the code were run on the same workstation

● 24 core AMD Ryzen Threadripper 3960X, 48 Hyperthreads
● NVIDIA V100 GPU
● AMD Raedon Pro VII

Compilers Used:

Implementation
Target Architecture SYCL Kokkos OpenMP

NVIDIA GPU
intel/llvm

sycl-nightly20
220425

GCC9.3.0
Kokkos 3.3.01

llvm/clang 15.0.0

AMD GPU
intel/llvm

sycl-nightly
20220425

GCC9.3.0
Kokkos 3.3.01

rocm-4.5.2

clang-rocm
(rocm-4.5.2)

CPU multithreading

HipSYCL
v0.9.3

Clang 15.0

Intel oneAPI
2022.0.2

GCC9.3.0
Kokkos 3.3.01

clang 13.0.1

● Not one compiler that works or is
optimized for all the target architectures

● Varying issues with different compilers;
Lots of trial and error.

● Performance results represent the best
performance obtained from our
experimentation.

HEP-CCEHEP-CCE 11

Performance Comparison

● FFT : SYCL/OpenMP performs better than Kokkos due
to further optimizations in FFT normalization etc.

● Rasterization: SYCL/OpenMP performs better than
Kokkos on NVIDIA GPUs mainly due to RNG . Other
kernels are similar in timing

○ OpenMP HIP backend has large RNG overhead
● ScatterAdd:

○ SYCL 5x slower than Kokkos for CUDA backend
○ OpenMP also 5x slower than Kokkos for CUDA

backend
○ SYCL same as Kokkos for HIP(AMD)

HEP-CCEHEP-CCE 12

CPU Scaling Comparison (SYCL vs. OpenMP)

● Not using multithreaded FFTW at the moment. FFT
dominates the CPU time.

● For Scatter-Add and Rasterization, performance is
saturated at around 24 threads (24 hardware cores).

● Changing OpenMP thread-core binding can further
improve the performance.

● Example of how the choice of compiler can
affect performance significantly.

● Dpcpp has extra 1s+ time in the 1st kernel.

HEP-CCEHEP-CCE 13

Summary
Ease of Porting:

● Porting the Kokkos implementation of WCT to SYCL was relatively straightforward due to
similarities of their syntaxes.

● Porting to OpenMP was also relatively easy, but getting the most of the performance required a bit
more optimization work.

Performance:

● Compiler support for both SYCL and OpenMP is still under development. Performance across
different architectures is variable.

● NVIDIA GPUs are the best supported (in terms of performance) by all three programming models.

Common Issues:

● Lack of a universal API for portable optimized libraries (such as FFT and RNG).

● Code written for serial CPU processing needs to be restructured for the best parallel performance.

HEP-CCEHEP-CCE 14

Recap: Kokkos port challenges and code changes

● Wire-Cell Toolkit and its associated tests (relied ton LArSoft) have many dependencies
○ Use Docker containers to package the dependencies, compilers and Kokkos builds

● Wire-Cell uses task-based programming model: need to retain the flexibility that some tasks
may not run on the GPUs

○ Added a C++ KokkosEnv context manager component to initialize and finalize Kokkos

● Kokkos does not provide a wrapper API for optimized vendor FFTs (FFTW, cuFFT, etc.)
○ Implemented own FFT wrapper similar to the Synergia group

● Numerous code refactoring and reorganization to make it more GPU friendly
○ Improved RNG usage (also improved CPU performance significantly)
○ Data layout transformation to use dense matrix representation instead of sparse vectors.
○ …

HEP-CCEHEP-CCE 15

Porting Wire-Cell-Gen to SYCL

Issues:

● Various SYCL Compilers some fast developing, each have some issues for WireCell Gen
code

○ Intel distributed oneAPI (dpcpp) → does not support AMD/Nvidia GPU
■ Host backend use tbb by default
■ Long delay ~1s for 1st kernel launch (?)

○ github.com/intel/llvm —> works for Nvidia/AMD,
but hostbackend not full feature supported. (e.g group level collective like scan,sum)

○ hipSYCL —> We only got OMP backend work, others have run time error, or build
error

■ Also strict in Syntax
q.parallel_for(N0, [=] (auto i0) { ptr[i0] /= N0 ; }) ; // Won’t compile on hipSYCL

● Due to lack of working standalone Wirecell running environment , we have to run under
LarSoft framework which we need container for run on different platforms.
Have not successfully build intel/llvm compiler for AMD backend within container.

Zhihua Dong

HEP-CCEHEP-CCE 16

Porting Wire-Cell-Gen to OpenMP
Issues:

● For most of the kernels, a simple porting can give a decent performance on both CPU and GPU.
However, there is one kernel (set_sampling_bat) that needs different parallelism pattern.

● Different from Kokkos, it is difficult to change the data layout. Also there is no easy-to-use data
structure (e.g. multi-dimensional array).

● Compiler is still developing for better performance (e.g. atomic operation).
● Currently can not compile the project with nvc++ compiler.
● Currently can not find GPU inside container, so we can not test our code on other platforms which

requires container.
● Data movement speed is 1.5-3 times slower than that in Kokkos.
● We don’t need to initialize and finalize OpenMP like Kokkos, but the first data allocation on GPU

requires a long time (~60 ms).
● OpenMP usually use more registers and generate more instructions than CUDA for the same

kernel. This behavior becomes more observable for small kernels.

Tianle Wang

