
Accelerating Uproot with Awkward
Forth

Aryan Roy
Manipal Institute of Technology

Dr. Jim Pivarski
Princeton University

Uproot: ROOT I/O in Python

● Uproot is a library for reading and writing ROOT files in Python and NumPy.

● Uproot is pure Python, not dependent on ROOT.

● PyROOT and root_numpy depend on ROOT.

2

But, isn’t Python slow?

● ROOT TTrees have column layout (numeric data and ragged arrays)

and row layout (everything else) .

● Python implementation is slow, except for columnar data where it can cast a whole block of

data as arrays, achieving the objective in O(1) time.

● For record-oriented data, we cannot do better than O(n), however, O(n) in a compiled

language is much better than O(n) in Python.

3

Minimizing Dependencies

● Problem: Python is slow, but compilation toolchains (like Cling/LLVM) are

heavy dependencies.

● Idea: interpreted languages can be fast if specialized.

● AwkwardForth [arXiv:2102.13516] is a Domain Specific Language (DSL) for

file I/O into Awkward Arrays, based on Forth (an old programming language).

4

https://arxiv.org/abs/2102.13516

What AwkwardForth Looks Like

5

>>> import awkward as ak

>>> vm = ak.forth.ForthMachine32("""

: fibonacci (n -- nth-fibonacci-number)

dup

1 > if

1- dup 1- recurse

swap recurse

+

then

;

20 0 do

i fibonacci

loop

""")

>>> vm.run()

>>> vm.stack

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181]

Maximizing speed

In an informal study, it was found that Python took on average 900 ns per

instruction, compared to 5 ns for AwkwardForth on the same machine.

Like Python and Java, AwkwardForth instructions are turned into bytecode to be

interpreted by a VirtualMachine. But…

● Python checks types at runtime, AwkwardForth has only one type (integers).

● Python and Java follow object pointers at runtime, AwkwardForth has only

one data structure (a stack of integers).

● AwkwardForth is a very minimal language.

I started this project by writing an Avro file reader with AwkwardForth.

It’s 8× faster than fastavro Python package.

6

https://github.com/scikit-hep/awkward/pull/648#issuecomment-761296216

The Implementation

The AwkwardForth code generation is interwoven with the current Python

implementation because the type-dependent code for ROOT TTrees already exists.

Python and AwkwardForth generation alternate line by line to ensure that they can

be maintained together.

This is meta-programming: Python code that generates AwkwardForth code.

7

Then it gets more complicated…

ROOT specifies the data types in a file using TStreamerInfo, so even the Python

code needs to be generated on the fly from this data.

This is meta-metaprogramming: Python that generates Python that generates

AwkwardForth.

8

The Final Implementation

Record-oriented data
types are 400×
faster!

9

Tapping Into Multithreading

Uproot 5 (AwkwardForth) scales but

the end to end process

has a serial part.

10

Uproot 4 (pure Python) doesn’t scale
at all due to the GIL.

Conclusion

● We achieved the predicted performance (400× faster!) for an AwkwardForth

based ROOT TTree reader.

● The new reader is extremely fast without having to install a compiler.

● The AwkwardForth code generation involves meta-programming and meta-

meta-programming.

● Part of Uproot 5, due to be released in early December!

11

