4

Accelerating Uproot with Awkward ‘
Forth

Aryan Roy

Manipal Institute of Technology

Dr. Jim Pivarski
Princeton University




Uproot: ROOT 1I/0 in Python

e Uproot is a library for reading and writing ROOT files in Python and NumPy.
e Uproot is pure Python, not dependent on ROOT.
e PyROOT and root_numpy depend on ROOT.

—iri
Izr:mlysis scrir[)tEI |:|
LI

hist

Vector

111
Analysis scripts Uproot: only ROQT /O, everything else in other libs
S I -
111
Analysis scripts root_pandas Awkward Array zstandard
I I
Iz4 & xxhash
PyROOT root_numpy Pandas
XRootD
ROOT NumPy




Slowest things on earth:
‘?, | -

But, isn’t Python slow? 7

e ROOT TTrees have column layout (numeric data and ragged arrays)
and row layout (everything else) .

e Python implementation is slow, except for columnar data where it can cast a whole block of
data as arrays, achieving the objective in O(1) time.

e For record-oriented data, we cannot do better than O(n), however, O(n) in a compiled
language is much better than O(n) in Python.

Logical Table Physical Table
Representation | Representation

al | b1 | el

T o [a1 [b1[c1[a2]b2][c2|a3|b3[ca]as[ba[calas]bs]es |
a3 | b3 | <3 Column layout

ad | b4 | ca

a5 | b5 | c5 a1 [a2 [a3 [ a4 [a5 [b1 [ b2 [03 [ b4 [b5 [c1 [c2 [ca3[ca [ o5 |

| | |

| encodedchunk |  encodedchunk |  encodedchunk |




Minimizing Dependencies

e Problem: Python is slow, but compilation toolchains (like Cling/LLVM) are
heavy dependencies.

e I|dea: interpreted languages can be fast if specialized.

e AwkwardForth [arXiv:2102.13516] is a Domain Specific Language (DSL) for

file 1/0 into Awkward Arrays, based on Forth (an old programming language).



https://arxiv.org/abs/2102.13516

What AwkwardForth Looks Like

>>> import awkward as ak
>>> vm = ak.forth.ForthMachine32 ("""
fibonacci ( n -—— nth-fibonacci-number )
dup
1 > if
1- dup 1- recurse
swap recurse
+
then

20 0 do

i fibonacci
loop
")
>>> vm.run ()
>>> vm.stack

13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181]




Maximizing speed

In an informal study, it was found that Python took on average 900 ns per
instruction, compared to 5 ns for AwkwardForth on the same machine.

Like Python and Java, AwkwardForth instructions are turned into bytecode to be
interpreted by a VirtualMachine. But...

e Python checks types at runtime, AwkwardForth has only one type (integers).

e Python and Java follow object pointers at runtime, AwkwardForth has only
one data structure (a stack of integers).

e AwkwardForth is a very minimal language.

| started this project by writing an Avro file reader with AwkwardForth.
It's 8x faster than fastavro Python package.



https://github.com/scikit-hep/awkward/pull/648#issuecomment-761296216

The Implementation

The AwkwardForth code generation is interwoven with the current Python
implementation because the type-dependent code for ROOT TTrees already exists.
Python and AwkwardForth generation alternate line by line to ensure that they can
be maintained together.

This is meta-programming: Python code that generates AwkwardForth code.
length = cursor.field(chunk, _stl container_size, context)
if helper obj.is forth():
key = forth obj.get keys(1)
form_key = f"node{key}-offsets”
helper_obj.add to header(f"output node{key}-offsets inte4\n")
helper obj.add to init(f"e node{key}-offsets <- stack\n")

helper obj.add to pre(
f"stream |I-> stack\n dup node{key}-offsets +<- stack\n"
)



Then it gets more complicated...

ROOT specifies the data types in a file using TStreamerlnfo, so even the Python
code needs to be generated on the fly from this data.

This is meta-metaprogramming: Python that generates Python that generates
AwkwardForth.

read_members.append(

if context.get('speedbump’, True):
cursor.skip(1)
if helper obj.is forth():
helper obj.add to pre('1l stream skip \\n")




The Final Implementation

Deserialization rate (MiB/sec)

10% 3
107 3
107 3

10% 3

107 5

—&— C++ ROOT

—- Python (Uproot 4)

—@— AwkwardForth (Uproot 5)
g |
i

float

std::vector<float=

doubly nested triply nested

Record-oriented data
types are 400x
faster!




Tapping Into Multithreading

Uproot 4 (pure Python) doesn’t scale T
Y 1200
at all due to the GIL. 5
= 1000
% 800 +
. single thread (no concurrency overhead) E 200
% o ] ° 200
;..E. g multithreaded (ThreadPoolExecutor) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
_E number of threads
g 6
s _ Uproot 5 (AwkwardForth) scales but
E | ”elnera ing Forth code
7, e e | the end to end process
warm cache - NumPy
0

T T T T T T T T T T T T T T T T has a Serlal part-
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of threads



Conclusion

e We achieved the predicted performance (400x faster!) for an AwkwardForth
based ROOT TTree reader.

e The new reader is extremely fast without having to install a compiler.

e The AwkwardForth code generation involves meta-programming and meta-
meta-programming.

e Part of Uproot 5, due to be released in early December!

feat: Finalizing AwkwardForth reader for Uproot #644

SN GG aryan26roy merged 39 commits into main from aryan-forth-reader-latest (53 on Sep 8




