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Performance portability

• Heterogenous computing is one of the key to meet the HL-LHC computing challenge
• Challenges of HEP computing:

- Hundreds of computing sites (grid clusters + HPC systems + clouds)
- Hundreds of C++ kernels (several million line of code, no hot-spots) 
- Hundreds of data objects (dynamic, polymorphic) 
- Hundreds of non-professional developers (domain experts)

• Portability:
• Support multiple accelerator platforms with minimal changes to code base 

• Performance portability:
• Efficient use of CPU and GPU
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Portability: HPC landscape

• Accelerator architectures are proliferating
- Main GPU manufacturers: NVidia, Intel, AMD  
- FPGA is possible, but is used less in scientific computing

• Up coming flagship HPC systems has a mixture of architectures and GPU vendors
• CPU+GPU is common NOW, but future system could be different 

- Shared physical memory between CPU and GPU
- ARM, FPGA

• Ability to use the GPU resources may be a prerequisite to the access of these machines
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Leonardo, Cineca, 2021  
Intel CPU, NVIDIA GPU, 200+PFlops

LUMI, CSC, 2021  
AMD CPU, AMD GPU, 550 PFlops

Alps, CSCS, 2023  
NVIDIA Arm CPU+GPU
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Portability: Software landscape

• Rapidly changing ~O(month) portability solutions
- New features/compiler supports/New backend

• Different approaches:
- Compiler pragma-based approach
- Libraries
- Language extension

• HEP-CCE: Joint effort of major U.S. National labs involved in HEP 
- Investigate different portability solutions in HEP context
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Portable Parallelization APIs and Languages

Kokkos: A C++ abstraction layer (library) that supports parallel

execution of the code and data management for di↵erent host and

accelerator architectures.

SYCL: A specification for a cross-platform C++ abstraction layer.

Implementations are provided by di↵erent vendors/organizations to support

di↵erent architectures.

OpenMP: Compiler directive-based programming model for parallel

execution on di↵erent host and accelerator architectures.

alpaka: Header only parallel abstraction library that provides low level

control of hardware, targeting CPUs, GPUs and FPGAs

std::execution::pararallel C++ standards based approach to launching

parallel tasks. Still under development by standards bodies, with possible

full integration with C++26.

Experiment Testbeds

WCT – WireCell Toolkit (DUNE): Liquid Argon TPC Simulation
FCS – FastCaloSim (ATLAS): Parametrized LAr Calorimeter Simulation
Patatrack (CMS): Silicon pixel tracker reconstruction
p2r (CMS): Propagate to R track follower
ACTS tracking workflow (ACTS): multistage track finder and following

Metrics

Ease of Learning

novices, C++ developers, GPU experts

Code conversion

CPU ! GPU, API ! API

Extent of modifications to existing code

Control of main, threading/execution model

Extent of modifications to EDM / Data

Extent of modifications to build rules / system

Hardware Mapping

current and promised future support of hardware

Feature Availability

reductions, kernel chaining, callbacks, concurrency

Address needs of large and small workflows

Long term sustainability and code stability

backward/forward compatibility of API and eg CUDA

Compilation time

Run time

what happens to original CPU code

Ease of Debugging

Aesthetics

beauty is in the eye of the beholder

Interoperability

interaction with externals, thread pools, c++ standards

Performance Studies

Figure 1: FastCaloSim Timings. Figure 2: p2r Timings.

Figure 3: WCT Timings.

Test case Throughput (events/s)
CPU version, 1 thread 13.5 ± 0.2
Kokkos version, Serial execution space 8.5 ± 0.2
CPU version, 40 threads 539 ± 9
Kokkos version, Threads execution space, peak (18 threads) 28 ± 1
CUDA version, peak (9 concurrent events and CPU threads) 1840 ± 20
CUDA version, 1 concurrent event 720 ± 20
CUDA version, 1 concurrent event, memory pool disabled 159 ± 1
Kokkos version, CUDA execution space 115.7 ± 0.3

Table 1: Patatrack Timings

Kokkos

similar learning curve to
CUDA
needs explicit init/finalize
crafting SoAs with views is
tedious
no support for jagged arrays
long templates make
debugging hard
need to explicitly define
backends at compilation
no generic use of concurrent
kernels
well established
strong developer community
and prompt backend support

SYCL

can target all hardware
backends from same source,
though recompilation or
di↵erent compiler versions
required
near native performance
more verbose than CUDA, but
similar to Kokkos for memory
management when using
bu↵ers
callbacks may not be
supported in future, no
concurrent kernels
good cmake integration
strong support by Intel,
pushing towards integration in
C++ standards

OpenMP

easy to implement, does not
require major changes to the
C++ code
performance varies from
compiler to compiler
specialized operations (e.g.
atomic) less performant than
CUDA
under active development
architecture agnostic compiler
directives can o✏oad to
multiple GPUs, FPGAs

std::par

plain C++ - low entry bar for
developers
cannot access low level GPU
features
memory transfers restricted to
USM
unless kernels have a direct
thrust counterpart, not as
performant as CUDA
no asynchronous operations
no ability to specify kernel
execution parameters
(block/grid size)
compilers still under
development, can be buggy
C++ standards compliant

alpaka

Header-only C++ library
Single-source programming
model (kernels are embedded
in application code)
At compilation alpaka kernels
are transformed into native
kernels. Achieves
compatibility with the vendor
ecosystem (e.g., debugging
tools)
Low-level and powerful API.
Not always super-intuitive
Heavy usage of C++
template meta-programming.
The application code tends to
be quite verbose

Work supported by US Department of Energy, O�ce of Science, O�ce of High Energy Physics under the High Energy
Physics Center for Computational Excellence (HEP-CCE), a collaboration between Argonne National Laboratory, Brookhaven
National Laboratory, Fermilab and Lawrence Berkeley National Laboratory. ACAT2022, 10/23/2022-10/28/2022

Focus of today -  
with an example test bed application

Hardware

Software
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P2R introduction

• Track reconstruction is one of the most computational intensive task in  
collider experiments such as the LHC at CERN

• P2R is a standalone mini-app. to perform core math of parallelized track 
reconstruction
- Build tracks in radial direction from detector hits (propagation +Kalman Update)
- Lightweight kernel extracted from a more realistic application  

(mkFit, vectorized CPU track fitting)
- Together with P2Z (a sister project) 

forms the backbone of track fitting kernels
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mkFit: https://arxiv.org/abs/2006.00071
p2r: https://github.com/cerati/p2r-tests
p2z:https://github.com/cerati/p2z-tests

https://trackreco.github.io/
https://trackreco.github.io/
https://arxiv.org/abs/2006.00071
https://github.com/cerati/p2r-tests
https://github.com/cerati/p2z-tests
https://arxiv.org/abs/2006.00071
https://github.com/cerati/p2r-tests
https://github.com/cerati/p2z-tests
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P2R program overview
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• Simplified program workflow:
- Fixed set of track parameters
- Fixed number of events (nevts)
- Fixed number of tracks in each event (ntrks)
- Single GPU kernel:

• Prepare data on CPU
• Transfer to GPU compute
• Transfer track data back to CPU 

• P2R uses Array-Of-Structure-Of-Array (AOSOA) as the main data structure
- Total work of ntrks x nevts, tracks in an event are grouped into batch of bsize 
- Batch of tracks are put into the same data structure (MPTRK)

ntrks=8192

nevts=100

MPTRK 
(SOA)

…

Track  
parameters

bsize
…

…
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Alpaka programming model 

• Single-source, header only C++ library
- No additional runtime dependency introduced

• Initially started out as a thin abstraction layer over CUDA
- API level similar to CUDA
- Added an abstraction layer for portability 

(work division, memory operations etc.)
• Kernels are templated with an accelerator 

- Easy switching 
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https://github.com/alpaka-group/alpaka

Example Memory operations Alpaka kernel

Alpaka accelerator

https://github.com/alpaka-group/alpaka
https://github.com/alpaka-group/alpaka
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Kokkos programming model

• Single source C++ template library
• Aims to be descriptive, not prescriptive

- Developers express algorithm in general parallel programming concepts
- Kokkos handles mapping to hardware 
- Abstraction layer provides handles for efficient data layout for both GPU/CPU

• No explicit mapping of loop iterations to threads
- Could map to hardware that is not a close match of GPU-centric model
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https://github.com/kokkos/kokkos

Kokkos Abstraction

CUDA
NVIDIA

OpenMP HIP 
AMD

Parallel  
execution  
backends

CPU
pThread

Pattern: nature of work 
Execution Policy:  
How and where  
computations are  
executed
Body: Unit of work

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
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https://github.com/kokkos/kokkos

Pattern: nature of work 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How and where  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Kokkos Abstraction

CUDA
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OpenMP HIP 
AMD
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execution  
backends

CPU
pThread

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos
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SYCL

• SYCL is a specification of single-source C++ programming model  
for heterogeneous computing
- Different compilers/libraries implement the specification

• Data Parallel C++ (Part of Intel’s OneAPI)
- Implements SYCL standard + extension features
- Support Intel’s hardware (CPU/GPU/FPGA) + Nvidia/AMD GPUs

• Open source, maintained by Intel in an branch of LLVM 
• AMD GPUs supported via hipSYCL(Heidelberg U) as well

• Compilers are rapidly evolving
• Both Alpaka/Kokkos are developing  

SYCL backend to support 
intel hardware
- Kokkos is almost “feature  

complete”
- Alpaka has experimental  

support since v0.9
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Different implementations of SYCL

https://github.com/intel/llvm
https://github.com/intel/llvm
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std::par
• Standard parallelization since C++17

- Express parallel algorithm with standard language
• Plain C++ code
• Current limitations:

- Memory operation via unified shared memory
- No async operations
- Cannot specify kernel launch parameters

• Compiler supports:
- NVIDIA GPU via closed source compiler(nvc++) for NVIDIA GPUs
- Intel GPU support requires adding oneAPI libraries(code change)
- Still in early development
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C++17 C++20 C++23/Beyond

Parallel algorithms:
std::execution 
std::for_each

std::atomic<T> 
std::atomic_ref<T>

Concurrency features:

Range-based parallel algorithm

Data structure:
std::mdspan/mdarray

Support for async. Execution
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Porting experience

• Started with vectorized CPU(TBB) implementation 
• Convert to CUDA

- Profiling to define operating parameters
• Convert to portability solution

- Core kernel code largely remains the same
- Change of API: data handling, kernel launching

• Compilation 
- Configuration (SW stack) to compile for different back ends 
- Profiling to understand implementation
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Portable Parallelization APIs and Languages

Kokkos: A C++ abstraction layer (library) that supports parallel

execution of the code and data management for di↵erent host and

accelerator architectures.

SYCL: A specification for a cross-platform C++ abstraction layer.

Implementations are provided by di↵erent vendors/organizations to support

di↵erent architectures.

OpenMP: Compiler directive-based programming model for parallel

execution on di↵erent host and accelerator architectures.

alpaka: Header only parallel abstraction library that provides low level

control of hardware, targeting CPUs, GPUs and FPGAs

std::execution::pararallel C++ standards based approach to launching

parallel tasks. Still under development by standards bodies, with possible

full integration with C++26.

Experiment Testbeds

WCT – WireCell Toolkit (DUNE): Liquid Argon TPC Simulation
FCS – FastCaloSim (ATLAS): Parametrized LAr Calorimeter Simulation
Patatrack (CMS): Silicon pixel tracker reconstruction
p2r (CMS): Propagate to R track follower
ACTS tracking workflow (ACTS): multistage track finder and following

Metrics

Ease of Learning

novices, C++ developers, GPU experts

Code conversion

CPU ! GPU, API ! API

Extent of modifications to existing code

Control of main, threading/execution model

Extent of modifications to EDM / Data

Extent of modifications to build rules / system

Hardware Mapping

current and promised future support of hardware

Feature Availability

reductions, kernel chaining, callbacks, concurrency

Address needs of large and small workflows

Long term sustainability and code stability

backward/forward compatibility of API and eg CUDA

Compilation time

Run time

what happens to original CPU code

Ease of Debugging

Aesthetics

beauty is in the eye of the beholder

Interoperability

interaction with externals, thread pools, c++ standards

Performance Studies

Figure 1: FastCaloSim Timings. Figure 2: p2r Timings.

Figure 3: WCT Timings.

Test case Throughput (events/s)
CPU version, 1 thread 13.5 ± 0.2
Kokkos version, Serial execution space 8.5 ± 0.2
CPU version, 40 threads 539 ± 9
Kokkos version, Threads execution space, peak (18 threads) 28 ± 1
CUDA version, peak (9 concurrent events and CPU threads) 1840 ± 20
CUDA version, 1 concurrent event 720 ± 20
CUDA version, 1 concurrent event, memory pool disabled 159 ± 1
Kokkos version, CUDA execution space 115.7 ± 0.3

Table 1: Patatrack Timings

Kokkos

similar learning curve to
CUDA
needs explicit init/finalize
crafting SoAs with views is
tedious
no support for jagged arrays
long templates make
debugging hard
need to explicitly define
backends at compilation
no generic use of concurrent
kernels
well established
strong developer community
and prompt backend support

SYCL

can target all hardware
backends from same source,
though recompilation or
di↵erent compiler versions
required
near native performance
more verbose than CUDA, but
similar to Kokkos for memory
management when using
bu↵ers
callbacks may not be
supported in future, no
concurrent kernels
good cmake integration
strong support by Intel,
pushing towards integration in
C++ standards

OpenMP

easy to implement, does not
require major changes to the
C++ code
performance varies from
compiler to compiler
specialized operations (e.g.
atomic) less performant than
CUDA
under active development
architecture agnostic compiler
directives can o✏oad to
multiple GPUs, FPGAs

std::par

plain C++ - low entry bar for
developers
cannot access low level GPU
features
memory transfers restricted to
USM
unless kernels have a direct
thrust counterpart, not as
performant as CUDA
no asynchronous operations
no ability to specify kernel
execution parameters
(block/grid size)
compilers still under
development, can be buggy
C++ standards compliant

alpaka

Header-only C++ library
Single-source programming
model (kernels are embedded
in application code)
At compilation alpaka kernels
are transformed into native
kernels. Achieves
compatibility with the vendor
ecosystem (e.g., debugging
tools)
Low-level and powerful API.
Not always super-intuitive
Heavy usage of C++
template meta-programming.
The application code tends to
be quite verbose

Work supported by US Department of Energy, O�ce of Science, O�ce of High Energy Physics under the High Energy
Physics Center for Computational Excellence (HEP-CCE), a collaboration between Argonne National Laboratory, Brookhaven
National Laboratory, Fermilab and Lawrence Berkeley National Laboratory. ACAT2022, 10/23/2022-10/28/2022
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Porting experience

• Started with vectorized CPU(TBB) implementation 
• Convert to CUDA

- Profiling to define operating parameters
• Convert to portability solution

- Core kernel code largely remains the same
- Change of API: data handling, kernel launching

• Compilation 
- Configuration (SW stack) to compile for different back ends 
- Profiling to understand implementation
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CPU ! GPU, API ! API

Extent of modifications to existing code

Control of main, threading/execution model
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current and promised future support of hardware
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Address needs of large and small workflows

Long term sustainability and code stability

backward/forward compatibility of API and eg CUDA

Compilation time

Run time

what happens to original CPU code

Ease of Debugging

Aesthetics

beauty is in the eye of the beholder
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interaction with externals, thread pools, c++ standards
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required
near native performance
more verbose than CUDA, but
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management when using
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easy to implement, does not
require major changes to the
C++ code
performance varies from
compiler to compiler
specialized operations (e.g.
atomic) less performant than
CUDA
under active development
architecture agnostic compiler
directives can o✏oad to
multiple GPUs, FPGAs

std::par

plain C++ - low entry bar for
developers
cannot access low level GPU
features
memory transfers restricted to
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unless kernels have a direct
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no ability to specify kernel
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compilers still under
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Single-source programming
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Work supported by US Department of Energy, O�ce of Science, O�ce of High Energy Physics under the High Energy
Physics Center for Computational Excellence (HEP-CCE), a collaboration between Argonne National Laboratory, Brookhaven
National Laboratory, Fermilab and Lawrence Berkeley National Laboratory. ACAT2022, 10/23/2022-10/28/2022

More time consuming  
to understand if we have  
converted optimally
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Porting experience

• Started with vectorized CPU(TBB) implementation 
• Convert to CUDA

- Profiling to define operating parameters
• Convert to portability solution

- Core kernel code largely remains the same
- Change of API: data handling, kernel launching

• Compilation 
- Configuration (SW stack) to compile for different back ends 
- Profiling to understand implementation
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easy to implement, does not
require major changes to the
C++ code
performance varies from
compiler to compiler
specialized operations (e.g.
atomic) less performant than
CUDA
under active development
architecture agnostic compiler
directives can o✏oad to
multiple GPUs, FPGAs

std::par

plain C++ - low entry bar for
developers
cannot access low level GPU
features
memory transfers restricted to
USM
unless kernels have a direct
thrust counterpart, not as
performant as CUDA
no asynchronous operations
no ability to specify kernel
execution parameters
(block/grid size)
compilers still under
development, can be buggy
C++ standards compliant

alpaka

Header-only C++ library
Single-source programming
model (kernels are embedded
in application code)
At compilation alpaka kernels
are transformed into native
kernels. Achieves
compatibility with the vendor
ecosystem (e.g., debugging
tools)
Low-level and powerful API.
Not always super-intuitive
Heavy usage of C++
template meta-programming.
The application code tends to
be quite verbose

Work supported by US Department of Energy, O�ce of Science, O�ce of High Energy Physics under the High Energy
Physics Center for Computational Excellence (HEP-CCE), a collaboration between Argonne National Laboratory, Brookhaven
National Laboratory, Fermilab and Lawrence Berkeley National Laboratory. ACAT2022, 10/23/2022-10/28/2022

Less well supported for 
AMD/Intel backends
- often requires 
developer’s support
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Measurement on JLSE

• JLSE = Joint Laboratory for System Evaluation (JLSE)
- HPC Testbed system hosted at Argonne National Lab

• Measured repeated 10 times
- Does not include time for data-transfer (~3x kernel time on a A100 GPU)

• All versions compiled with the same p2r parameters
- Perform computation on ~800k tracks,  repeated 5 times

• Showing results on A-100/MI-100 GPUs:
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NVIDIA GPU (A100) AMD GPU (MI-100)
Gigabyte G242-Z11 
AMD 7532 32c 2.4Ghz 
DDR4-3200 256GB (8x32G DIMMs) RAM 
1x Nvidia A100 40GB PCIe 4.0 
Mellanox ConnectX-6 EDR 
Intel P4510 2TB NVMe

- 2x AMD EPYC 7543 32c (Milan) 
- 4x AMD MI100 32GB GPUs 
- Infinity Fabric 
- 512GB DDR4-3200

JLSE hardware

Peak FP64 
flops

Peak Memory 
bandwidth

N cores

AMD MI-100 11.5 TFLOPS 1.2 TB/s 7680

NVIDIA A100 9.7 TFLOPS 1.9 TB/s 6912

https://www.jlse.anl.gov/
https://www.jlse.anl.gov/
https://www.jlse.anl.gov/hardware-under-development/
https://www.jlse.anl.gov/hardware-under-development/
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Results

• Result obtained with same code-based and compared with platform-native implementation 
• Observed a large variation of slow-down 

- “Out-of-the-box” performance [requires detailed studies]
• Alpaka/SYCL’s result is slower than expectation in A100 (contrary to the experience with other CCE codes)
• Would be good to understand attribution of Kokkos’s overhead & Alpaka::HIP result 

• Was able to run on Intel GPUs as well
- Kokkos, SYCL, std::par (adding one::dpl libraries)
- Alpaka::SYCL backend is being developed
- Currently under NDA 
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NVIDIA GPU (A100)
AMD GPU (MI-100)
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Summary and outlook

• Early round of results using JLSE 
- latest versions of Kokkos/Alpaka/Clang
- Understanding the results

• Further studies:
- CPU multicore measurements:

• Efficient CPU AND NVidia GPU backend will be very relevant in near terms
- Effect portability layers on memory transfer

• Longer term goal:
- Contribute towards HEP-CCE final report 
- “Best” solution will probably depend on application/situation

• Platforms to run on
• Kernel bottlenecks
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