SR . DEPARTMENT OF Office of

Fermilab %QES ENERGY Science

Application of Portable Parallelization Strategies for GPUs
on track reconstruction kernels

Martin Kwok, Matti Kortelainen, Giuseppe Cerati, Alexei Strelchenko, Oliver
Gutsche(Fermilab)

ACAT22
27 Oct, 2022

HEP-CCE

Argonne & (&) Brookhaven 2 Earmilab B3 BERKELEY LAB

NATIONAL LABORATORY o the World

https://indico.cern.ch/event/1106990/contributions/4991278/
https://indico.cern.ch/event/1106990/contributions/4991278/

Performance portability

Heterogenous computing is one of the key to meet the HL-LHC computing challenge

Challenges of HEP computing:

- Hundreds of computing sites (grid clusters + HPC systems + clouds)

- Hundreds of C++ kernels (several million line of code, no hot-spots)

- Hundreds of data objects (dynamic, polymorphic)

- Hundreds of non-professional developers (domain experts)

Portability:

- Support multiple accelerator platforms with minimal changes to code base
Performance portability:

- Efficient use of CPU and GPU

Run 3 (u=55) Run 4 (u=88-140)
T T

us)
e
3
o
=
T
-1
A
&N
o

| °

'a‘ T I T T T T T T i T .I T I T T T I T T I T T I T I I

S S0~ ATLAS Prehmlnary]

50000 ~pae L L @ | 2022 Computing Model - CPU]
_ " CMS Public 3 - 2
0 L Total CPU ‘] = 40 .
5 2022 Estimates /7 = | e Conservative R&D -
(] 40000~ -m NoR&D improvements ,/ — c v Aggressive R&D _," L -
?\ i -®- Weighted probable scenario / 1 o - . .___—.’ —
(e} | === 10 to 20% annual resource increase /7 °a - — Sustained budget model g B
o I £ 30— (+10% +20% capacity/year) ; —
vy 30000 7 - £ n
T 5 i 22 i
i @) - ." = A
2 20000 z 20r B
(@) o . -
—_ | § L 4
© = -]
l-lé' 10000 I s 10 - -
oLl 1 I I | 1 I I I I I L I I I I I L] =]
2021 2023 2025 2027 2029 2031 2033 2035 2037 oL Ly v b b b by by b by
Year 2020 2022 2024 2026 2028 2030 2032 2034 2036

Year

3¢ Fermilab
ac rermia

Portability: HPC landscape

* Accelerator architectures are proliferating
- Main GPU manufacturers: NVidia, Intel, AMD
- FPGA is possible, but is used less in scientific computing

* Up coming flagship HPC systems has a mixture of architectures and GPU vendors

* CPU+GPU is common NOW, but future system could be different
- Shared physical memory between CPU and GPU
- ARM, FPGA

* Ability to use the GPU resources may be a prerequisite to the access of these machines

Perlmutter NERSC, 2020 Frontier ORNL, 2021 | Leonardo, Cineca, 2021
AMD CPU, Nvidia Tesla GPU AMD CPU, AMD GPU, 1.5 ExaFlop Intel CPU, NVIDIA GPU, 200+PFlops

SHATRIRII

04K Rino

sy FININTTER
0—

"LEONARDO

Aurora Argonne, 2022 | El Capitan LLNL, 2023 | LUMI, CSC, 2021
Intel CPU, Intel Xe GPU, > 1 ExaFlop AMD CPU, AMD GPU, > 1.5 ExaFlop | AMD CPU, AMD GPU, 550 PFlops

3 10/27/2022 Martin Kwok | Performance Portability ACAT22

Alps, CSCS, 2023
NVIDIA Arm CPU+GPU

2% Fermilab

Portability: Software landscape

HEP-CCE

» Rapidly changing ~O(month) portability solutions

- New features/compiler supports/New backend

* Different approaches:

- Compiler pragma-based approach
- Libraries
- Language extension

« HEP-CCE: Joint effort of major U.S. National labs involved in HEP

4

Hardware

10/27/2022

- Investigate different portability solutions in HEP context

Software

Focus of today -
with an example test bed application

NVidia GPU

AMD GPU

Intel GPU

multicore
CPU

FPGA

codeplay
and intel/livm

complete for |
select GPUs /|

native and via
OpenMP oneAPI::dpl
target offload

g++ & tbb

Martin Kwok | Performance Portability ACAT22

2= Fermilab

P2R introduction

* Track reconstruction is one of the most computational intensive task in
collider experiments such as the LHC at CERN

* P2R is a standalone mini-app. to perform core math of parallelized track
reconstruction
- Build tracks in radial direction from detector hits (propagation +Kalman Update)

- Lightweight kernel extracted from a more realistic application
(mkFit, vectorized CPU track fitting)

- Together with P2Z (a sister project)
forms the backbone of track fitting kernels

Detector measurement
Updated track state

updated state

after N E—— XNN=XN'1N+KN‘(mN—HN'XN'lN)
P v S
Nth measurement ——— MN

propagationto N ——— =Fn-1-XN"Ino1

T

N-1
t N-1

2% Fermilab

updated state
after N-1

mkFit: https://arxiv.org/abs/2006.00071
p2r: hitps://github.com/cerati/p2r-tests
p2z:https://github.com/cerati/p2z-tests

xN-1

5 10/27/2022 Martin Kwok | Performance Portability ACAT22

https://trackreco.github.io/
https://trackreco.github.io/
https://arxiv.org/abs/2006.00071
https://github.com/cerati/p2r-tests
https://github.com/cerati/p2z-tests
https://arxiv.org/abs/2006.00071
https://github.com/cerati/p2r-tests
https://github.com/cerati/p2z-tests

P2R program overview

» Simplified program workflow:
Fixed set of track parameters
Fixed number of events (nevts)

Fixed number of tracks in each event (ntrks)

Single GPU kernel:

* Prepare data on CPU

* Transfer to GPU compute
 Transfer track data back to CPU

* P2R uses Array-Of-Structure-Of-Array (AOSOA) as the main data structure
- Total work of ntrks X nevts, tracks in an event are grouped into batch of bsize

- Batch of tracks are put into the same data structure (MPTRK)

ntrks=8192
MPTRK bsize +—>
(SOA) FaESEEEE EREEEER| AREEERE AEEERE
-—>
Track
parameters
Sessiis fiiiiit | nevts=100

3¢ Fermilab
6 10/27/2022 Martin Kwok | Performance Portability ACAT 22

Alpaka programming model

» Single-source, header only C++ library
- No additional runtime dependency introduced

* Initially started out as a thin abstraction layer over CUDA

- APl level similar to CUDA

- Added an abstraction layer for portability
(work division, memory operations etc.)

* Kernels are templated with an accelerator

- Easy switching

Example Memory operations

// Allocate buffers

auto bufCpu = mem: :buf::alloc<float, Idx>(devCpu, extent);
auto bufGpu = mem: :buf::alloc<float, Idx>(devGpu, extent);

/* Initialization .. */

// Copy buffer from CPU to GPU - destination comes first
mem: :view: :copy(gpuQueue, bufGpu, bufCpu, extent);

// Execute GPU kernel
queue: :enqueue (gpuQueue, someKernelTask);

// Copy results back to CPU and wait for completion
mem: :view: :copy (gpuQueue, bufCpu, bufGpu, extent);

7 10/27/2022

Alpaka kernel

https://github.com/alpaka-group/alpaka

Alpaka accelerator

// Example: CPU accelerator
using Acc = acc::AccCpuOmp2Blocks<Dim, Idx>;

// Example: CUDA GPU accelerator
using Acc = acc::AccGpuCudaRt<Dim, Idx>;

// Example: HIP GPU accelerator
using Acc = acc::AccGpuHipRt<Dim, Idx>;

struct HelloWorldKernel {

template <typename Acc>
ALPAKA_FN_ACC void operator() (Acc const & acc) const {

using namespace alpaka;

uint32_t threadIdx = idx::getIdx<Grid, Threads>(acc)[0];

printf("Hello, World from alpaka thread %u!\n", threadIdx);

1

Martin Kwok | Performance Portability ACAT 22

2= Fermilab

https://github.com/alpaka-group/alpaka
https://github.com/alpaka-group/alpaka

Kokkos programming model

https://github.com/kokkos/kokkos

» Single source C++ template library

* Aims to be descriptive, not prescriptive

- Developers express algorithm in general parallel programming concepts

- Kokkos handles mapping to hardware

- Abstraction layer provides handles for efficient data layout for both GPU/CPU
* No explicit mapping of loop iterations to threads

- Could map to hardware that is not a close match of GPU-centric model

8

Pattern: nature of work
Execution Policy:

How and where
computations are
executed

Body: Unit of work

Kokkos Abstraction
Pattern Policy
for (element = 0; element < numElements; ++element) {
total = 0;
~. for (qp = 0; gqp < numQPs; ++qp) {
o total += dot(left[element] [qp], right[element] [qpl);
@ 3
elementValues [element] = total;
}
Parallel
execution CUDA ObenMP HIP CPU
NVIDIA P AMD oThread
backends

2= Fermilab

10/27/2022 Martin Kwok | Performance Portability ACAT 22

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

Kokkos programming model https://github.com/kokkos/kokkos

» Single source C++ template library
* Aims to be descriptive, not prescriptive

- Developers express algorithm in general parallel programming concepts

- Kokkos handles mapping to hardware

- Abstraction layer provides handles for efficient data layout for both GPU/CPU
* No explicit mapping of loop iterations to threads

- Could map to hardware that is not a close match of GPU-centric model

Kokkos Abstraction

Pattern: nature Of work parallel_for("Label "
Execution Policy: RangePolicy< ExecutionSpace >(0,numberOfIntervals),
How and where [=] (const int64_t i) {

Custom

computations are /* ... body ... */
executed P
Body: Unit of work
Parallel e " o
' OpenMP
backends

3F Fermilab
9 10/27/2022 Martin Kwok | Performance Portability ACAT 22

https://github.com/kokkos/kokkos
https://github.com/kokkos/kokkos

SYCL

» SYCL is a specification of single-source C++ programming model
for heterogeneous computing
- Different compilers/libraries implement the specification
« Data Parallel C++ (Part of Intel’s OneAPI)
- Implements SYCL standard + extension features
- Support Intel’s hardware (CPU/GPU/FPGA) + Nvidia/AMD GPUs

* Open source, maintained by Intel in an branch of LLVM
* AMD GPUs supported via hipSYCL(Heidelberg U) as well

« Compilers are rapidly evolving
* Both Alpaka/Kokkos are developing

SYCL backend to support Different implementations of SYCL
ntel hardware e Go | [miminvEmi. m
- Kokkos is almost “feature ») support heterogeneous compute

complete”
- Alpaka has experimental -l
support since v0.9 et pslrehy

!nte! (_:I_’Us _lnte! gl_’Us XILINX FPGAs

10 10/27/2022 Martin Kwok | Performance Portability ACAT 22

UNIVERSITAT
HEIDELBERG

hipSYCL
CUDA and
HIP/ROCm

uuuuuuu

neoSYCL
SX-AURORA
TSUBASA

Intel CPUs
NEC VEs

2% Fermilab

https://github.com/intel/llvm
https://github.com/intel/llvm

std::par

» Standard parallelization since C++17
- Express parallel algorithm with standard language
* Plain C++ code
 Current limitations:
- Memory operation via unified shared memory
- No async operations
- Cannot specify kernel launch parameters
« Compiler supports:
- NVIDIA GPU via closed source compiler(nvc++) for NVIDIA GPUs
- Intel GPU support requires adding oneAPI libraries(code change)
- Still in early development

C++17 C++20 C++23/Beyond
Parallel algorithms: Concurrency features: Data structure:
std::execution std: :mdspan/mdarray

std::atomic<T>

std::for_each std::atomic ref<T> Range-based parallel algorithm

Support for async. Execution

3¢ Fermilab
11 10/27/2022 Martin Kwok | Performance Portability ACAT 22

Porting experience

» Started with vectorized CPU(TBB) implementation
* Convert to CUDA
- Profiling to define operating parameters
» Convert to portability solution
- Core kernel code largely remains the same
- Change of API: data handling, kernel launching
» Compilation
- Configuration (SW stack) to compile for different back ends
- Profiling to understand implementation

T H codeplay
NVidia GPU and intel/llvm
AMD GPU complete for
sélegtGpUs/ |
native and via
Intel GPU OpenMP oneAPI::dpl
target offload
multicore gr+ & toh

FPGA

3¢ Fermilab
12 10/27/2022 Martin Kwok | Performance Portability ACAT22

Porting experience

» Started with vectorized CPU(TBB) implementation

» Convert to CUDA
- Profiling to define operating parameters

» Convert to portability solution

- Core kernel code largely remains the same
- Change of API: data handling, kernel launching

» Compilation

More time consuming
to understand if we have
converted optimally

- Configuration (SW stack) to compile for different back ends

- |Profiling to understand implementation

NVidia GPU

AMD GPU

Intel GPU

multicore
CPU

FPGA

codeplay
and intel/livm

eattre” /|
completé for
select GPUs” |

native and via
OpenMP oneAPI::dpl
target offload

g++ & tbb

13 10/27/2022 Martin Kwok | Performance Portability ACAT22

2% Fermilab

Porting experience

» Started with vectorized CPU(TBB) implementation

» Convert to CUDA
- Profiling to define operating parameters

» Convert to portability solution
- Core kernel code largely remains the same

- Change of API: data handling, kernel launching

» Compilation

Less well supported for
AMD/Intel backends

- often requires
developer’s support

- Configuration (SW stack) to compile for different back ends

- |Profiling to understand implementation

NVidia GPU

AMD GPU

Intel GPU

multicore
CPU

FPGA

codeplay
and intel/livm

eattre” /|
completé for
select GPUs” |

native and via
OpenMP oneAPI::dpl
target offload

g++ & tbb

14 10/27/2022 Martin Kwok | Performance Portability ACAT22

2% Fermilab

Measurement on JLSE

» JLSE = Joint Laboratory for System Evaluation (JLSE)
- HPC Testbed system hosted at Argonne National Lab
* Measured repeated 10 times
- Does not include time for data-transfer (~3x kernel time on a A100 GPU)
* All versions compiled with the same p2r parameters
- Perform computation on ~800k tracks, repeated 5 times
» Showing results on A-100/MI-100 GPUs:

11.5 TFLOPS 1.2 TB/s 7680
9.7 TFLOPS 1.9 TB/s 6912
JLSE hardware
NVIDIA GPU (A100) AMD GPU (MI-100)

Gigabyte G242-Z11 - 2x AMD EPYC 7543 32c (Milan)
AMD 7532 32¢ 2.4Ghz - 4x AMD MI100 32GB GPUs
DDR4-3200 256GB (8x32G DIMMs) RAM - Infinity Fabric
1x Nvidia A100 40GB PCle 4.0 - 512GB DDR4-3200

Mellanox ConnectX-6 EDR

Intel P4510 2TB NVMe .
2= Fermilab

15 10/27/2022 Martin Kwok | Performance Portability ACAT22

https://www.jlse.anl.gov/
https://www.jlse.anl.gov/
https://www.jlse.anl.gov/hardware-under-development/
https://www.jlse.anl.gov/hardware-under-development/

Results

* Result obtained with same code-based and compared with platform-native implementation

* Observed a large variation of slow-down

- “Out-of-the-box” performance [requires detailed studies]
* Alpaka/SYCL'’s result is slower than expectation in A100 (contrary to the experience with other CCE codes)
« Would be good to understand attribution of Kokkos’s overhead & Alpaka::HIP result

* Was able to run on Intel GPUs as well
- Kokkos, SYCL, std::par (adding one::dpl libraries)
- Alpaka::SYCL backend is being developed
- Currently under NDA AMD GPU (MI-100)
NVIDIA GPU (A100)

0 710"
2 ~

s Tested on A100 2 _ Tested on AMD MI-100
51010__ CUDA-11.6,bsize=32 - g | 100.0 % 163.23 % ROCmM-5.2.0,bsize=32

= g] = s 0%

Q - 100.0 % 1 a o

-g’ I 62.67 % 441 % : ‘g’ 109: 54.26 %

3 43.93 % 1% 2

P 1 9— —

£ o) -

108}
108} i

107

7
10 CUDA Alpaka:CUDA Kokkos:CUDA SYCL:CUDA std::par(nvc++) HIP Alpaka:HIP Kokkos:HIP SYCLHIP
Portability Technologies Portability Technologies
aF rermiab

16 10/27/2022 Martin Kwok | Performance Portability ACAT22

Summary and outlook

* Early round of results using JLSE
- latest versions of Kokkos/Alpaka/Clang
- Understanding the results
* Further studies:
- CPU multicore measurements:
» Efficient CPU AND NVidia GPU backend will be very relevant in near terms
- Effect portability layers on memory transfer
* Longer term goal:
- Contribute towards HEP-CCE final report
- “Best” solution will probably depend on application/situation

* Platforms to run on
 Kernel bottlenecks

Acknowledgement:

We thank the Joint Laboratory for System Evaluation (JLSE)
for providing the resources for the performance measurements
used in this work.

3¢ Fermilab
17 10/27/2022 Martin Kwok | Performance Portability ACAT22

https://www.jlse.anl.gov/
https://www.jlse.anl.gov/

