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APEIRON: an overview
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▪ Goal: develop a framework offering hardware and software support for the execution of
real-time dataflow applications on a system composed by interconnected FPGAs .

▪ Map the dataflow graph of the application on the distributed 
FPGA system and offers runtime support for the execution.

▪ Allow users with no (or little) experience in hardware design 
tools, to develop their applications on such distributed 
FPGA-based platforms

– Tasks are implemented in C++ using High Level Synthesis tools 
(Xilinx Vitis).

– Lightweight C++ communication API

• Non-blocking send()

• Blocking receive()

▪ APEIRON is based on Xilinx Vitis High Level Synthesis 
framework and on INFN Communication IP



APEIRON: INFN Communication IP
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▪ INFN is developing the IPs implementing a direct network that 
allows low-latency data transfer between processing tasks 
deployed on the same FPGA (intra-node communication) 
and on different FPGAs (inter-node communication).



APEIRON: the Node
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▪ Host Interface IP: Interface the FPGA logic with the host through the system bus.

– Xilinx XDMA PCIe Gen3

▪ Routing IP: Routing of intra-node and inter-node messages between processing tasks 
on FPGA.

▪ Network IP: Network channels and Application-dependent I/O

– APElink 20 Gbps → 80 Gbps

– UDP/IP over 1/10 GbE → 25/40/100 GbE

▪ HLS Kernels: user defined processing tasks

APEIRON node in a Torus three-D configuration

Communication IP



APEIRON: Communication Latency
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2 Alveo U200 Cards,
2 QSFP+ ports each,
ring topology.



APEIRON: Workflow for automatic FPGA bitstream generation
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▪ The HLS task must have a generic
interface, implementation is free.

▪ A YAML configuration file is used to
describe the kernels interconnection
topology, specifying how many
input/output channels they have

▪ Adaptation toward/from IntraNode
ports of the Routing IP is done by
the automatically generated
Aggregator and Dispatcher kernel
templates.

void example_task(

[list of optional kernel specific parameters],
message_stream_t message_data_in[N_INPUT_CHANNELS],
message_stream_t message_data_out[N_OUTPUT_CHANNELS]) 
{…}



APEIRON: HLS C++ Communication Primitives
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– send(msg, size, dest_node, 

task_id, ch_id)

– receive(ch_id)

Where :

dest_node are the n-Dim coordinates of the 
destination node (FPGA) in a n-Dim torus 
network.

task_id is the local-to-node receiving 
task (kernel) identifier (0-3).

ch_id is the local-to-task receiving fifo
(channel) identifier (0-127).

T

A

B

C



APEIRON: Use in Trigger and Data Acquistion Systems
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• Input data from several different channels (data 
sources, detectors/sub-detectors).

• Data streams from different channels 
recombined through the processing layers using a 
low-latency, modular and scalable network 
infrastructure

• Distributed online processing on heterogeneous 
computing devices (FPGAs for the moment) in n
subsequent layers.

• Typically features extraction will occur in the first 
NN layers on RO FPGAs.

• More resource-demanding NN layers can 
be implemented in subsequent processing layers.

• Classification produced by the NN in last 
processing layer (e.g. pid) will be input for 
the trigger processor/storage online data 
reduction stage for triggerless systems.

Abstract Processing Environment for Intelligent Read-Out systems based on 
Neural networks



PID in NA62 with the RICH using NN on FPGA at L0 Trigger
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▪ Goal: for any event detected by the RICH 
provide an estimate for the number charged 
particles and the number of electrons

▪ Streaming readout processing on FPGA using 
Neural Networks for classification (10 MHz).

▪ Produce a new primitives stream for L0TP+

▪ The main challenge is the proc. throughput

TEL62
4x TEL62

8x 1GbE links

FPGA

Primitives from 
other detectors

L0TP+



Design and Implementation Workflow
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QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and constraints (mainly FPGA resource usage) must be 
taken into account and verified at any stage:
• Generation strategy of training and validation data sets.
• TF/KERAS NN architecture (number and kind of layers) and representation of the input

• Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).
• QKeras Serach iteratively the minimal representation size in bits of weights, biases and activations, 

possibly by layer.
• hls4ml Tuning of REUSE FACTOR config param (low values -> low latency, high throughput, high resource 

usage), clock frequency.
• Vivado HLS co-simulation for verification of performance (experimented very good agreement with 

QKeras Model)



NN Architectures: Dense Model
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▪ Input representation: normalized 
hitlist (max 64 hits per event)

▪ Output: 4 classes (0, 1, 2, 3+ rings)

▪ Quantization (fixed point)

– Weights and biases: 8 bits <8, 1>

– Activations: 16 bits <16, 6>

▪ FPGA resource usage (VCU118) 
LUT 14%, DSP 2%, BRAM 0%

▪ Latency: 22 cycles @ 150MHz

▪ Initiation Interval (II): 8 cycles

▪ Throughput: 18.75 MHz

Layer (type) Output Shape Param #

=================================================================

input1 (InputLayer) [(None, 64)] 0

fc1 (Dense) (None, 64) 4160

act1 (Activation) (None, 64) 0

fc2 (Dense) (None, 16) 1040

act2 (Activation) (None, 16) 0

fc3 (Dense) (None, 4) 68

softmax (Activation) (None, 4) 0

=================================================================

Total params: 5,268



NN Architectures: Convolutional Model
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▪ Input representation: 16x16 images

▪ Output: 4 classes (0, 1, 2, 3+ rings)

▪ Quantization (fixed point):

– Weights and biases: 8 bits <8, 1>

– Activations:16 bits <16, 6>

▪ FPGA resource usage (Alveo U200)
LUT 5.2%, FF 1.5%, DSP 4.8%, 
BRAM 0.05%

▪ Latency: 388 cycles @ 220MHz

▪ Initiation Interval (II): 369 cycles

▪ Throughput: 0.6 MHz

Layer (type) Output Shape Param #

=================================================================

input1 (InputLayer) [(None, 16, 16, 1)] 0

conv1 (Conv2D) (None, 16, 16, 8) 80

act1 (Activation) (None, 16, 16, 8) 0

maxp1 (MaxPooling2D) (None, 8, 8, 8) 0

conv2 (Conv2D) (None, 8, 8, 8) 584

act2 (Activation) (None, 8, 8, 8) 0

maxp2 (MaxPooling2D) (None, 4, 4, 8) 0

flatten (Flatten) (None, 128) 0

fc3 (Dense) (None, 16) 2064

act3 (Activation) (None, 16) 0

fc4 (Dense) (None, 4) 68

softmax (Activation) (None, 4) 0

=================================================================

Total params: 2,796



Convolutional model – Kernel replication
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Resources usage for 12 replicas:
• LUT 74%
• FF 17%
• DSP 61%
• BRAM 1.4%
Processing time @220MHz: 137 ns 
per event
Processing throughput: 7.2 MHz

Throughput is not enough to sustain L0 rate, but we can replicate the network 
multiple times, also on multiple devices if necessary.



Dense Model: results for classification of number of rings
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▪ Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

Class 0 (0 rings) Efficiency 85.7 Purity 95.6
Class 1 (1 rings) Efficiency 87.7 Purity 82.9
Class 2 (2 rings) Efficiency 72.3 Purity 67.4
Class 3 (3+ rings) Efficiency 71.9 Purity 84.3

Efficiency = TP / (TP + FN)

Purity = TP / (TP + FP)



Convolutional Model: results for classification of number of rings
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▪ Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

Class 0 (0 rings) Efficiency 88.6 Purity 94.0
Class 1 (1 rings) Efficiency 89.5 Purity 84.6
Class 2 (2 rings) Efficiency 74.4 Purity 70.5
Class 3 (3+ rings) Efficiency 72.2 Purity 86.1

Efficiency = TP / (TP + FN)

Purity = TP / (TP + FP)



Results for classification of number of electrons
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▪ Preliminary results for online classification of the 
number of "electrons" show that even the very 
simple NN architectures that we tested are 
capable, below 35 GeV/c momentum, of reaching a 
non-negligible performance (see terminal picture 
below).

▪ It can be improved for the online unfiltered event 
stream using a dedicated NN receiving in input 
data from other detectors (e.g. L0CALO).



Conclusions

▪ We control the workflow for the implementation of real-time/high throughput classifiers on 
FPGA.

▪ The use case of the PID for the RICH shows that it is possible to reach good performance (at least 
for number of rings for now) even with a very limited usage of FPGA resources.

▪ This hints for applying the methodology also to:

– less capable (i.e. front-end) FPGAs

– complex design making use of a large fraction of FPGA resources (e.g. L0TP+)

Either to improve the L0 trigger performance or to online tag and select events in a future 
streaming readout DAQ.

▪ Going to exploit the APEIRON framework to ingest and process primitive streams from other 
detectors (e.g. L0CALO to improve electron identification).

▪ We are going to deploy and test the described system in parasitic mode in NA62 next year.

▪ We are interested in the application of the framework in other contexts. 
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