
APEIRON: composing smart TDAQ systems
for high energy physics experiments

Alessandro Lonardo
(INFN Roma, APE Lab)

for the APEIRON team

This work is supported by the TEXTAROSSA project (G.A. n. 956831), as part of the

EuroHPC initiative, and by INFN National Scientific Committee 5.

21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research
ACAT 2022

Bari – 27th October 2022

APEIRON: an overview

2

▪ Goal: develop a framework offering hardware and software support for the execution of
real-time dataflow applications on a system composed by interconnected FPGAs .

▪ Map the dataflow graph of the application on the distributed
FPGA system and offers runtime support for the execution.

▪ Allow users with no (or little) experience in hardware design
tools, to develop their applications on such distributed
FPGA-based platforms

– Tasks are implemented in C++ using High Level Synthesis tools
(Xilinx Vitis).

– Lightweight C++ communication API

• Non-blocking send()

• Blocking receive()

▪ APEIRON is based on Xilinx Vitis High Level Synthesis
framework and on INFN Communication IP

APEIRON: INFN Communication IP

3

▪ INFN is developing the IPs implementing a direct network that
allows low-latency data transfer between processing tasks
deployed on the same FPGA (intra-node communication)
and on different FPGAs (inter-node communication).

APEIRON: the Node

4

▪ Host Interface IP: Interface the FPGA logic with the host through the system bus.

– Xilinx XDMA PCIe Gen3

▪ Routing IP: Routing of intra-node and inter-node messages between processing tasks
on FPGA.

▪ Network IP: Network channels and Application-dependent I/O

– APElink 20 Gbps → 80 Gbps

– UDP/IP over 1/10 GbE → 25/40/100 GbE

▪ HLS Kernels: user defined processing tasks

APEIRON node in a Torus three-D configuration

Communication IP

APEIRON: Communication Latency

5

2 Alveo U200 Cards,
2 QSFP+ ports each,
ring topology.

APEIRON: Workflow for automatic FPGA bitstream generation

6

▪ The HLS task must have a generic
interface, implementation is free.

▪ A YAML configuration file is used to
describe the kernels interconnection
topology, specifying how many
input/output channels they have

▪ Adaptation toward/from IntraNode
ports of the Routing IP is done by
the automatically generated
Aggregator and Dispatcher kernel
templates.

void example_task(

[list of optional kernel specific parameters],
message_stream_t message_data_in[N_INPUT_CHANNELS],
message_stream_t message_data_out[N_OUTPUT_CHANNELS])
{…}

APEIRON: HLS C++ Communication Primitives

7

– send(msg, size, dest_node,

task_id, ch_id)

– receive(ch_id)

Where :

dest_node are the n-Dim coordinates of the
destination node (FPGA) in a n-Dim torus
network.

task_id is the local-to-node receiving
task (kernel) identifier (0-3).

ch_id is the local-to-task receiving fifo
(channel) identifier (0-127).

T

A

B

C

APEIRON: Use in Trigger and Data Acquistion Systems

8

• Input data from several different channels (data
sources, detectors/sub-detectors).

• Data streams from different channels
recombined through the processing layers using a
low-latency, modular and scalable network
infrastructure

• Distributed online processing on heterogeneous
computing devices (FPGAs for the moment) in n
subsequent layers.

• Typically features extraction will occur in the first
NN layers on RO FPGAs.

• More resource-demanding NN layers can
be implemented in subsequent processing layers.

• Classification produced by the NN in last
processing layer (e.g. pid) will be input for
the trigger processor/storage online data
reduction stage for triggerless systems.

Abstract Processing Environment for Intelligent Read-Out systems based on
Neural networks

PID in NA62 with the RICH using NN on FPGA at L0 Trigger

9

▪ Goal: for any event detected by the RICH
provide an estimate for the number charged
particles and the number of electrons

▪ Streaming readout processing on FPGA using
Neural Networks for classification (10 MHz).

▪ Produce a new primitives stream for L0TP+

▪ The main challenge is the proc. throughput

TEL62
4x TEL62

8x 1GbE links

FPGA

Primitives from
other detectors

L0TP+

Design and Implementation Workflow

10

QKeras

TF/Keras
Model

QKeras
Model

Vivado HLS
Project

C Simulation
C Synthesis
C/Verilog Co-sim.
IP Generation

Design targets (efficiency, purity, throughput, latency) and constraints (mainly FPGA resource usage) must be
taken into account and verified at any stage:
• Generation strategy of training and validation data sets.
• TF/KERAS NN architecture (number and kind of layers) and representation of the input

• Training strategy (class balancing, batch sizes, optimizer choice, learning rate,...).
• QKeras Serach iteratively the minimal representation size in bits of weights, biases and activations,

possibly by layer.
• hls4ml Tuning of REUSE FACTOR config param (low values -> low latency, high throughput, high resource

usage), clock frequency.
• Vivado HLS co-simulation for verification of performance (experimented very good agreement with

QKeras Model)

NN Architectures: Dense Model

11

▪ Input representation: normalized
hitlist (max 64 hits per event)

▪ Output: 4 classes (0, 1, 2, 3+ rings)

▪ Quantization (fixed point)

– Weights and biases: 8 bits <8, 1>

– Activations: 16 bits <16, 6>

▪ FPGA resource usage (VCU118)
LUT 14%, DSP 2%, BRAM 0%

▪ Latency: 22 cycles @ 150MHz

▪ Initiation Interval (II): 8 cycles

▪ Throughput: 18.75 MHz

Layer (type) Output Shape Param #

===

input1 (InputLayer) [(None, 64)] 0

fc1 (Dense) (None, 64) 4160

act1 (Activation) (None, 64) 0

fc2 (Dense) (None, 16) 1040

act2 (Activation) (None, 16) 0

fc3 (Dense) (None, 4) 68

softmax (Activation) (None, 4) 0

===

Total params: 5,268

NN Architectures: Convolutional Model

12

▪ Input representation: 16x16 images

▪ Output: 4 classes (0, 1, 2, 3+ rings)

▪ Quantization (fixed point):

– Weights and biases: 8 bits <8, 1>

– Activations:16 bits <16, 6>

▪ FPGA resource usage (Alveo U200)
LUT 5.2%, FF 1.5%, DSP 4.8%,
BRAM 0.05%

▪ Latency: 388 cycles @ 220MHz

▪ Initiation Interval (II): 369 cycles

▪ Throughput: 0.6 MHz

Layer (type) Output Shape Param #

===

input1 (InputLayer) [(None, 16, 16, 1)] 0

conv1 (Conv2D) (None, 16, 16, 8) 80

act1 (Activation) (None, 16, 16, 8) 0

maxp1 (MaxPooling2D) (None, 8, 8, 8) 0

conv2 (Conv2D) (None, 8, 8, 8) 584

act2 (Activation) (None, 8, 8, 8) 0

maxp2 (MaxPooling2D) (None, 4, 4, 8) 0

flatten (Flatten) (None, 128) 0

fc3 (Dense) (None, 16) 2064

act3 (Activation) (None, 16) 0

fc4 (Dense) (None, 4) 68

softmax (Activation) (None, 4) 0

===

Total params: 2,796

Convolutional model – Kernel replication

13

Resources usage for 12 replicas:
• LUT 74%
• FF 17%
• DSP 61%
• BRAM 1.4%
Processing time @220MHz: 137 ns
per event
Processing throughput: 7.2 MHz

Throughput is not enough to sustain L0 rate, but we can replicate the network
multiple times, also on multiple devices if necessary.

Dense Model: results for classification of number of rings

14

▪ Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

Class 0 (0 rings) Efficiency 85.7 Purity 95.6
Class 1 (1 rings) Efficiency 87.7 Purity 82.9
Class 2 (2 rings) Efficiency 72.3 Purity 67.4
Class 3 (3+ rings) Efficiency 71.9 Purity 84.3

Efficiency = TP / (TP + FN)

Purity = TP / (TP + FP)

Convolutional Model: results for classification of number of rings

15

▪ Trained on 3 Mevents from run 8011, Validated on 3.5 Mevents from run 8893, ground truth label 1

Class 0 (0 rings) Efficiency 88.6 Purity 94.0
Class 1 (1 rings) Efficiency 89.5 Purity 84.6
Class 2 (2 rings) Efficiency 74.4 Purity 70.5
Class 3 (3+ rings) Efficiency 72.2 Purity 86.1

Efficiency = TP / (TP + FN)

Purity = TP / (TP + FP)

Results for classification of number of electrons

16

▪ Preliminary results for online classification of the
number of "electrons" show that even the very
simple NN architectures that we tested are
capable, below 35 GeV/c momentum, of reaching a
non-negligible performance (see terminal picture
below).

▪ It can be improved for the online unfiltered event
stream using a dedicated NN receiving in input
data from other detectors (e.g. L0CALO).

Conclusions

▪ We control the workflow for the implementation of real-time/high throughput classifiers on
FPGA.

▪ The use case of the PID for the RICH shows that it is possible to reach good performance (at least
for number of rings for now) even with a very limited usage of FPGA resources.

▪ This hints for applying the methodology also to:

– less capable (i.e. front-end) FPGAs

– complex design making use of a large fraction of FPGA resources (e.g. L0TP+)

Either to improve the L0 trigger performance or to online tag and select events in a future
streaming readout DAQ.

▪ Going to exploit the APEIRON framework to ingest and process primitive streams from other
detectors (e.g. L0CALO to improve electron identification).

▪ We are going to deploy and test the described system in parasitic mode in NA62 next year.

▪ We are interested in the application of the framework in other contexts.

17

The APEIRON Team

@INFN Roma – APE Lab

18

A. Lonardo P. Vicini F. Lo Cicero F. Simula M. Martinelli P. S. Paolucci

R. Ammendola A. Biagioni P. Cretaro O. Frezza C. Rossi M. Turisini

@IN
FN
CNA
F

A. Ciardiello

@INFN Roma

THANK YOU!

