ACAT 2022 23 – 28 oct 2022 Villa Romanazzi Carducci, <u>Bari, Italy</u>

Gauss

The LHCb simulation software Gauss & its Gaussino core framework

Motivation Building blocks Newest features

Gloria Corti, CERN on behalf of the LHCb Simulation Project

Setting the scene ...

LHCb Upgrade in Run3

- full software trigger with high signal purity
- analysis directly on trigger output

Very challenging for software & computing

Modernization of the whole LHCb software

- Multi-threading
- Better use of multi-processor CPUs
- Reduce memory usage
- Optimize cache performance
- Remove dead code
- Move to modern data structures
- Enable code vectorization
- Enable algorithmic optimization
- HLT1 reconstruction on GPUs

 $\mathcal{L}_{inst}: 4 \ge 10^{32} \rightarrow 2 \ge 10^{33} \text{ cm}^{-2} \text{ s}^{-1}$ $\mu: 1.1 \rightarrow 7.6$ $\mathcal{L}_{int}: 3 \text{ (Run1)} + 5 \text{ (Run2) fb}^{-1} \rightarrow 50 \text{ fb}^{-1}$

more on LHCb Run3 reconstruction and trigger in ACAT2022 talks by <u>A. Hennequin, N. Schulte</u> and <u>G. Tuci</u> and ACAT 2022 posters by <u>S. Akar</u> and <u>F. Reiss</u>

Upgrade Software and Computing TDR, CERN-LHCC-2018-007

ACAT 2022, Bari – 24 Oct 2022

... what about the simulation software ?

Simulation in Run3 will continue to dominate the LHCb CPU needs

Gauss is the LHCb simulation framework

- generates events
- simulates interactions with the detector
- based on Gaudi as core framework and on common LHCb code
- makes use of HEP common simulation software
- first production version in 2004

Simulation software upgrade needed!

- need for code optimization
- reduce memory usage
- adapt to changes in LHCb common software, e.g. use of DD4Hep
- exploit new features of external HEP simulation software, e.g. in Geant4
- use multi-threaded Gaudi and Geant4
- need for extensive palette of fast simulations

Restructure the code introducing an **experiment-independent layer**

Gaussino Core Simulation framework

- made by extracting experiment-independent functionality from Gauss
- uses Gaudi as core software framework
- run minimal functionality in stand-alone mode
- ideal test-bed for new developments
- started in collaboration with the CERN SFT group
- make it available in Key4Hep Turnkey software stack

more on Key4Hep in ACAT2022 poster by V. Volkl

Restructure the code introducing an **experiment-independent layer**

Gaussino is the new Core Simulation framework

- provides the structure and the hooks
- provides components to use HEP-wide software, e.g. for Pythia8 and Geant4

Gauss[-on-Gaussino] is the new version of the LHCb simulation framework

- based on Gaussino's core elements
- adds LHCb-specific components and configurations

i.e. the overall Gauss framework architecture

- similar modularity
- integrated generator and simulation phase
- similar MC truth output
- similar use of Gaudi algorithms, tools, etc.
- python-based configuration

Generator phase kept mostly as-is

Simulation phase redesigned following review of key elements

Core elements

- multi-threaded event loop
- multi-threaded Geant4
- interface to subdetectors fast simulations with Geant4
- interface to new external libraries, e.g.
 DD4Hep

Front-end

- higher level configuration in python
- possibility to run simple set-ups in stand-alone mode

Execution structure

- use Gaudi functional framework
- treat every algorithm as a 'task'

Random numbers

- adapt to multi-threading framework
- create random engine on the stack
- seed initialized with:
 - run#
 - event #
 - algorithm instance name, i.e. largest predictable unit

Generation Phase

Extracted as-is from Gauss Highly modular Thread safety of generators HepMC3 as exchange format

LHCb-PROC-2010-056, NSS2010 LHCB-FIGURE-2019-012

Gaussino

- Pythia 8 and some particle guns

Gauss(-on-Gaussino)

- specific LHCb settings and generators, e.g. EvtGen

Performance with Pythia8 as generator engine shared (P8) vs thread local (P8MT)

no LHCb-specific setting

9

Simulation Phase

New implementation with improved modularity

Simulation & Geometry services to steer different backends

Flexible python configuration to combine different setting, e.g. for in time/out of time pileup

Gaussino

- generic geometry service
- interaction with Geant4
- infrastructure for fast simulations

Gauss(-on-Gaussino)

- LHCb geometry specialization service(s)
- LHCb specific settings and physics extensions
- LHCb fast simulation models

Detailed detector simulation with Geant4

- Geant4 10 multi-threading
- Gaudi tools as factories for Geant4 objects
 - Python configuration of Geant4 settings
 - Geant4 manages its objetcs
- keep the event history in dedicated HepMC3 record while Geant4 process it

Performance of detailed simulation with Geant4

with Pythia8 generation shared (P8) vs thread local (P8MT) vs reading generated events from file

Simulation with LHCb 2016 conditions Signal D^o decays from minimum bias

LHCB-FIGURE-2019-012

ACAT 2022, Bari - 24 Oct 2022

Extensive palette of fast simulations options

Technique	GEN Phase	SIM Phase	Status	Note
ReDecay	+	+	done	infrastructure in Gaussino
SplitSim	+	+	done	infrastructure in Gaussino
ParticleGun	+	-	done	in Gaussino
RICHLess	-	+	under tests	i.e. reduced detector, infrastructure built in Gaussino
TrackerOnly	-	+	under tests	i.e. reduced detector, infrastructure built in Gaussino
Point Library	-	+	in progress	interface in Gaussino, model in Gauss
GANs	-	+	in progress	interface in Gaussino, model in Gauss
Lamarr	-	+	in progress	split between Gaussino and Gauss

PoS ICHEP2018 (2019) 271

Lamarr – ultra fast simulation

a pipeline of modular parametrizations replacing both the detector simulation and the reconstruction

more in ACAT 2022 poster by M. Barbetti; LHCb-FIGURE-2022-014

(a) <u>LHCb-TALK-2020-108</u>, ICHEP 2020 (b) <u>EPJ Web Conf 245 (2020) 02026</u>

Fast simulation models replacing Geant4 for a subdetector

Point library for calorimeters – extract energy deposits from a collection obtained from a detailed simulation and transform them based on the property of the impinging particle ^(a)

GANs – use GANs trained on the data produced by a detailed simulation to generate showers in Electromagnetic Calorimeter ^(b)

Interfacing fast simulations with Geant4

The interface steers the fast simulation:

- for which particle to do it
- in which region to do it
- how to do it
 - i.e. particle and track conditions, hit generation algorithm

Geant4 objects

2021 ACAT poster by M. Mazuerek (LHCb-PROC-2022-003); LHCb-FIGURE-2021-004

Performance with benchmark models

ImmediatedDeposit vs ShowerDeposit vs detailed simulation w Gauss[-on-Gaussino] vs detailed simulation w Gauss[-pre-Gaussino]

 minimum time to generate a specific number of hits with no additional calculation

ACAT 2022, Bari - 24 Oct 2022

ACAT 2022, Bari – 24 Oct 2022

Gauss & Gaussino

Geometry

Gaussino

- generic service to steer passing the information to Geant4 from different backends
- backend service for DD4Hep
- import & export of **GDML** files
- custom service for 'internal' volumes of simple shapes
 - works stand-alone
 - can be **mixed** with other geometry services
 - supports Geant4 parallel worlds
 - exploited for **fast simulations**

Gauss[-on-Gaussino]

- high level service to **configure** the geometry to simulate and sensitive detectors
- extension for LHCb legacy Detector Description for Run 1&2 and 3
- extension for LHCb new description using DD4Hep for Run3 and beyond

Visualisation of geometry and simulated events

Geant4 visualization drivers

- available at run time
- volume overlap checks possible
- G4 data only
- drivers: ASCIITree, OpenGL, DAWN, HepRep

Geant4 Users' Guides

Phoenix event display

- available as external tool
- geometry to be converted from GDML to a dedicated format
- both Geant4 and LHCb simulation data
- using JSON exporter for LHCb

more on Phoenix in LHCb in ACAT2021 Poster by A. Pappas

Dedicated steering due to Gaudi & Geant4 multi-threading interplay

- visualisation has its own thread
- information exchange at the right time

Monitoring & Output

Various persistent output formats possible with predefined contents

- conversion to built-in event model with consistent Monte Carlo 'truth'
 - from generators
 - from Geant4 choosing what to keep
- ROOT tuples and histograms
- HepMC3 generator output and EDM4hep sometimes in the future

Exploited in the **monitoring** of the produced simulation **samples** and software **performance** via the **LHCbPR** automatic tool

more on Simulation Quality in ACAT2022 Poster by D. Popov

Documentation

https://gaussino.docs.cern.ch/gaussino GitLab Repository

- Each new development in Gaussino and Gauss(-on-Gaussino) is documented
- Versioning of the documentation
- Provides
 - how to install and run
 - description of high-level python configurations
 - simple examples

- > The LHCb simulation software is undergoing a major upgrade for Run 3
- A new experiment-independent simulation framework, Gaussino, has been introduced as an intermediate layer
 - Gaussino is built on the Gaudi framework and provides an infrastructure for generators and a Geant4-based detailed simulation
- Gauss[-on-Gaussino] is the evolution of the LHCb simulation based on Gaussino and provides LHCb-specific additions
 - It will become the simulation framework for all LHCb running periods
- Gaussino is becoming mature for use outside LHCb

BACKUP

Example of using internal geometry service

- Required data for fast simulation models and other studies is not always present in the standard output
- An abstract custom detector can be used as a collector of the required information at any position in the detector
- A built-in mechanism can take care of potential volume overlaps by placing the additional volumes in parallel geometries

Visualization examples

ACAT 2022, Bari - 24 Oct 2022

Visualization backend in Gaussino/Gauss

Possible data containers

- Geant4: G4Trajectories, G4Hits, ...
- LHCb: MCParticles, MCHits, MCCaloHits, ...
- **EDM4Hep** in the future?
- additional optimization
 - only MCThruth
 - only trajectories from tracking, etc.

Recipe for Gaudi and Geant4 MT

- implement G4VisManager that spawns an additional G4Vis thread
- ensure G4Event lives long enough for
 - G4 main simulation
 - Visualization post processing
- information exchange between custom G4RunManagers at the right moment

