

Accelerating Machine Learning inference using FPGAs: the PYNQ framework tested on an AWS FC2 F1 Instance

Dr. Marco Lorusso 1,2

Prof. Daniele Bonacorsi 1,2 Dr. Riccardo Travaglini ²

¹University of Bologna - Department of Physics and Astronomy

²National Institute for Nuclear Physics - Bologna Division

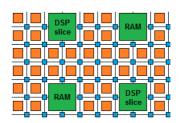
26th October 2022

Field Programmable Gate Array

Field Programmable **Gate Arrays** (FPGAs) → Middle ground between ASICs and multipurpose CPUs:

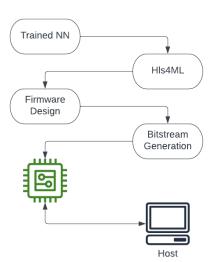
- Programmables to perform a wide range of tasks;
- Low-level/Near-metal implementation of algorithms \rightarrow low latency;
- Blend the benefits of both hardware and software:
- Internal layout made up of logic blocks (LUTs, flipflops, Digital Signal Processor slices), embedded in a general routing structure.

FPGA diagram



Implementing a Neural Network on an FPGA

- NN Translation into HLS (C++) using hls4ml (see next slide);
- Firmware design (I/O interfaces);
- Synthesis and implementation of the design;
- Production of the bitstream and programming of the FPGA;
- Running of the inference using an application on the host machine



The hls4ml package

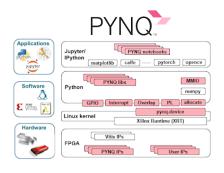
https://fastmachinelearning.org/hls4ml



- Developed by members of the HEP community to translate ML algorithms written in Python into High Level Synthesis code;
- ► HLS allows the generation of hardware descriptive code (HDL) from behavioral descriptions contained in C++ program;
- ▶ The translated Python objects can be injected in the automatic workflow of proprietary software like Vivado from Xilinx Inc.

The PYNQ project

- PYNQ is an open-source project from Xilinx(R);
- It provides a Jupyter-based framework with Python APIs for using Xilinx platforms;
- ► The **Python language** opens up the benefits of programmable logic (PL) to people without in-depth knowledge of low-level programming languages.



https://pynq.readthedocs.io

An introduction to PYNQ

- The overlay class is the core of the library;
- An overlay object is built providing the FPGA design to run on the PL;
- FPGA is programmed and relevant interface is available through PYNQ API function calls;
- ▶ It is possible to **accelerate** a software **application**, or to customize the hardware platform for a particular application.

```
from pynq import Overlay

overlay = Overlay("designbitstream.xclbin") # or .awsxclbin
result = overlay.<function described in FPGA design>
```


The testing ground: AWS F1 Instances

Cloud computing is used to test the capabilities of these tools in preparation for deployment of FPGA accelerator cards in a local server.

- Part of the AWS Cloud Computing catalogue;
- EC2 F1 instances use FPGAs to enable delivery of custom hardware accelerations:
- Packaged with tools to develop, simulate, debug, and compile a design.

Deploying on F1

- ► Follow the *Application Acceleration development flow*, offered by Vitis[™], targeting data center acceleration cards;
- ▶ **Upload** the **bitstream** to a S3 bucket and request the **creation** of an *Amazon FPGA Image* (AFI) accessible from all F1 instances;
- Write a Pyhton script using PYNQ APIs.

A "more traditional" approach is to use **OpenCL** to write the host application: both ways follow the **same** list of **basic instructions**.

2

9

10

11

12

13

14

15

From Python to HLS Code


```
import hls4ml

config = hls4ml.utils.config_from_keras_model(model, granularity='model')

hls_model = hls4ml.converters.convert_from_keras_model(model,

hls_config=config, part='<id of FPGA model>')

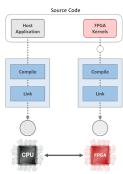
hls_model.compile()

hls_model.build(csim=False,synth=False)
```


Producing the Bitstream with Vitis

The *build* function creates the HLS code to import in the Vitis Software Platform developed by Xilinx.

- An application project with the target platform is created;
- ➤ The HLS code from *hls4ml* is imported as **source** for the *kernel* of the application;
- ► A *Hardware function* is associated to the **main C++ function** in the code;
- ► The **host application** is usually written in OpenCL (see next slide);
- The whole application is build for hardware deployment → Bitstream.



OpenCL vs PYNQ

The first thing to do in both cases, is to **program the device and initialize** the software context.

```
auto devices = xcl::get xil devices():
auto fileBuf = xcl::read binary file(binaryFile):
cl::Program::Binaries bins{{fileBuf.data(),

    fileBuf.size()}}:
OCL CHECk(err, context = cl::Context({device}, NULL, 1
                                                  import pynq

→ NULL, NULL, &err)):
                                                  ov =
OCL_CHECK(err, q = cl::CommandQueue(context, {device},

    pynq.Overlay("model_binary.awsxclbin")

OCL_CHECK(err, cl::Program program(context, {device}3
                                                  nn = ov.myproject

→ bins, NULL, &err)):
OCL CHECk(err, krnl vector add = cl::Kernel(program.
```

In OpenCL host and FPGA **buffers** need to be handled separately and linked after creation; with PYNQ, the user is only presented with a single interface for both:

OpenCL vs PYNQ (cont'd)

To **initiate data transfers** the direction as a function parameter must be specified in OpenCL, while in PYNQ the same is done with a specific function:

To **run the kernel** in OpenCL each kernel argument need to be set explicitly using the setArgs() function, before starting the execution with enqueueTask(); in PYNQ, the .call() function does everything in a single line.

Finally, the **output is retrieved** in both cases similarly to the input transfer:

```
1 OCL_CHECK(err, err = 

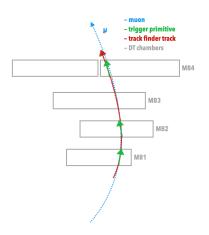
→ q.enqueueMigrateMemObjects({buffer_output}, 1 out.synq_from_device()

2 CL MIGRATE MEM OBJECT HOST)):
```


The tested model

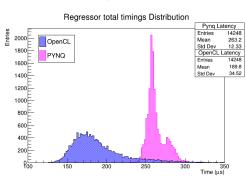
To **test** the **workflow** and the **performance**, a **Neural Network** has been considered:

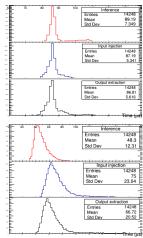
- Regressor in the context of Level-1 triggering at the CMS experiment at CERN:
 - NN predicts transverse momentum of muons using their position and direction in the detector



Timing Comparison

A difference in computation times can be seen between the same algorithm deployed with PYNQ and OpenCL:

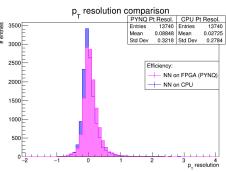




Inference comparison

The **FPGA's output** has been **vali-** on a condated against the NN run on a consumer **CPU**:

- small difference traceable to quantization of floating point to fixed point;
- ▶ small bias towards higher values of $\Delta p_T/p_T$.



Summary and conclusions

- This work is still in progress (i.e. kernel optimization);
- The possibility of deploying a Neural Network on a FPGA inside an AWS instance has been explored;
- A fast and easy-to-use alternative to host applications written in OpenCL has been found in PYNQ using the Python programming language;
- ► There seems to be **no important drawbacks** from using this new approach.

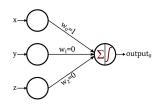
Thank you!

Backup

Artificial Neural Networks

The p_T assignment is currently carried out using **precompiled LUTs**. An alternative was explored using **Artificial Neural Network** (ANN):

- An ANN is a network designed to tackle non-linear learning problems;
- The Fully Connected Multilayer Perceptrons (MLPs) are made up of single units called Perceptrons;
- Perceptrons can be stacked together to build arbitrarily deep custom networks;
- ► The NN learns during the training process by receiving input patterns together with the corresponding true target variable and finding the best set of weights;
- ► The weights are used to predict the output with unseen data.



Graphical representation of a Perceptron.

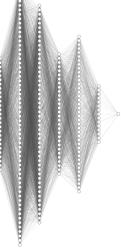
Neural Network for regression

A Fully

Connected MLP was built using QKeras with:

- Input layer: 27 features;
- 6 **hidden layers**: 35, 20, 25, 40, 20, 15 nodes;
- ▶ Output layer: returns the p_T value.
- ► Activation function: Rectified Linear Unit:
- Weight pruned.

The model was **tested using a consumer CPU** before the hardware implementation.



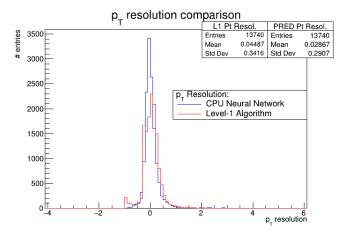
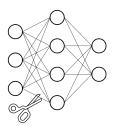


Figure: Transverse momentum resolution histograms computed for the machine learning model (blue) and Level-1 trigger (red) based momentum assignment.

Optimization techniques

To produce an **optimized NN** for **implementation** on an FPGA:

- Quantization: the parameters were converted from double precision floating-points to fixed points to exploit the efficiency of DSPs;
- ▶ Pruning: connections
 between nodes with low influence were cut
 to minimize the number of paramaters
 and operations during inference and reduce
 the resources needed for implementation.



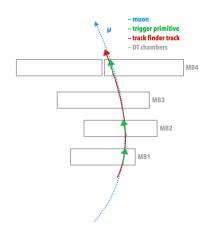
Before pruning

After pruning

Dataset to train and test the NN

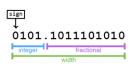
The entire **dataset** contains about **300000 simulated muons** with a range in p_T **from 3 to 200 GeV/c**. A set of **information** is included in order to **predict** the muon p_T :

- ► Trigger segments' position (wheel, sector, ϕ) for each station crossed by the particle;
- ► Their **direction** in CMS global coordinates (ϕ_b) .
- Trigger primitives' quality (i.e. number of hits used to build a segment).



Quantization

In order to produce an **optimized NN** for **implementation** on an FPGA, the models were *quantized*:



ap_fixed<14,4>

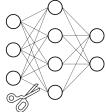
- Quantization is the conversion from high-precision floating-points to normalized low-precision integers (fixed-point) parameters;
- QKeras is a Python package developed as a collaboration between Google and HEP researchers to build NN with quantized parameters;
- It has an easy-to-use API: there are drop-in replacements for the most common layers used with Keras (e.g. Dense → QDense).

```
 \begin{array}{l} {}_{1} \\ {}_{2} \\ {}_{3} \\ {}_{3} \end{array} \text{QDense} \left(64 \text{, kernel\_quantizer} = \text{quantized\_bits} \left(6 \text{,0}\right) \text{,} \\ {}_{2} \\ {}_{3} \\ {}_{4} \\ {}_{3} \\ {}_{4} \\ {}_{4} \\ {}_{5} \\ {}_{5} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{9} \\ {}_{1} \\ {}_{1} \\ {}_{2} \\ {}_{3} \\ {}_{4} \\ {}_{4} \\ {}_{5} \\ {}_{6} \\ {}_{6} \\ {}_{9} \\ {}_{1} \\ {}_{1} \\ {}_{2} \\ {}_{3} \\ {}_{4} \\ {}_{4} \\ {}_{5} \\ {}_{6} \\ {}_{1} \\ {}_{2} \\ {}_{3} \\ {}_{4} \\ {}_{4} \\ {}_{5} \\ {}_{6} \\ {}_{1} \\ {}_{2} \\ {}_{3} \\ {}_{4} \\ {}_{4} \\ {}_{5} \\ {}_{6} \\ {}_{6} \\ {}_{1} \\ {}_{2} \\ {}_{3} \\ {}_{4} \\ {}_{4} \\ {}_{5} \\ {}_{5} \\ {}_{6} \\ {}_{6} \\ {}_{1} \\ {}_{2} \\ {}_{3} \\ {}_{4} \\ {}_{5} \\ {}_{5} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\ {}_{6} \\
```

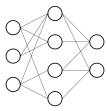

Slimming techniques - Weight Pruning

When building a NN model, the final hardware platform where the inference computation will be run, has to be considered.

- Weight Pruning is the elimination of unnecessary values in the weight tensor;
- Connections between nodes with low influence are "cut" during the synthesis of the HLS design;
- This is aimed at minimizing the number of parameters and operations involved in the inference computation.



Before pruning



After pruning

