
1

Extending ADL/CutLang with a
new dynamic multipurpose

protocol

Documentation and references : cern.ch/adl

Daniel Riley (Florida State U.) 
Berare Göktürk (Boğaziçi U.)  

Sezen Sekmen (Kyungpook Nat. U.) 
Burak Şen (METU)  

Gökhan Ünel (UC Irvine & Boğaziçi U.)

and the rest of the ADL/CutLang team

http://adl.web.cern.ch/index.html

Towards physics-focused HEP data analyses

2

Could there be an alternative way that...

• Allows more direct interaction with data

• Decouples the physics information from purely technical tasks, thereby shifting the focus to the

physics algorithm

• Improves the clarity and accessibility of analysis logic, and thereby its communicability and

preservation?

tt̄
jb

W
j
jjb

W
j
j

We traditionally perform analyses using analysis software frameworks:

• Frameworks are based on general purpose languages like C++ /

Python,

• Physics content and technical operations are intertwined,

• Code hard to read, maintain and communicate.

ADL is a declarative domain specific language (DSL) that describes the physics content of a HEP
analysis in a standard and unambiguous way.

• External DSL: Custom-designed syntax to express analysis-specific concepts. Reflects conceptual
reasoning of particle physicists. Focus on physics, not on programming.

• Declarative: States what to do, but not how to do it.

• Easy to read: Clear, self-describing syntax.

• Designed for everyone: experimentalists, phenomenologists, students, interested public…

ADL is framework-independent —> Any framework recognizing ADL can perform tasks with it.

• Decouples physics information from software / framework details.

• Multi-purpose use: Can be automatically translated or incorporated into the GPL / framework most
suitable for a given purpose, e.g. exp. analysis, (re)interpretation, analysis queries, …

• Easy communication between groups: exp., pheno, referees, students, public, …

• Easy preservation of analysis logic.

Analysis Description Language for HEP

3

The ADL construct

ADL consists of

• a plain text file (an ADL file) describing the

analysis logic using an easy-to-read DSL
with clear syntax.

• a library of self-contained functions
encapsulating variables that are non-trivial
to express with the ADL (e.g. MT2, ML
models). Internal or external (user)
functions.

blocktype	blockname	
		keyword1	instruc0on1	
		keyword1	instruc0on2	
		keyword3	instruc0on3	#	comment

• ADL file consists of blocks separating object,
variable and event selection definitions.
Blocks have a keyword-instruction structure.

• keywords specify analysis concepts and

operations.

4

ADL syntax with usage examples: link

LHADA (Les Houches Analysis Description Accord): Les Houches 2015 new physics WG report (arXiv:1605.02684, sec 17)

CutLang: Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727), Front. Big Data 4:659986, 2021  
 Several proceedings for ACAT and vCHEP

• Syntax includes mathematical and logical
operations, comparison and optimization
operators, reducers, 4-vector algebra and HEP-
specific functions (dφ, dR, …). See backup.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL
https://arxiv.org/abs/1605.02684
https://arxiv.org/abs/1801.05727

A very simple analysis example with ADL

#	OBJECTS	
object	goodMuons	
		take	muon	
		select	pT(muon)	>	20	
		select	abs(eta(muon))	<	2.4	
	
object	goodEles	
		take	ele	
		select	pT(ele)	>	20	
		select	abs(eta(ele))	<	2.5	
	
object	goodLeps	
		take	union(goodEles,	goodMuons)	
	
object	goodJets	
		take	jet	
		select	pT(jet)	>	30	
		select	abs(eta(jet))	<	2.4	
		reject	dR(jet,	goodLeps)	<	0.4

5

#	EVENT	VARIABLES	
define	HT	=	sum(pT(goodJets))	
define	MTl	=	Sqrt(2*pT(goodLeps[0])	*	MET*(1-cos(phi(METLV[0])	-	phi(goodLeps[0]))))	

#	EVENT	SELECTION	
region	baseline	
		select	size(goodJets)	>=	2	
		select	HT	>	200	
		select	MET	/	HT	<=	1	

region	signalregion	
		baseline	
		select	Size(goodLeps)	==	0	
		select	dphi(METLV[0],	jets[0])	>	0.5	

region	controlregion	
		baseline	
		select	size(goodLeps)	==	1	
		select	MTl	<	120

ADL implementations of some LHC analyses: https://github.com/ADL4HEP/ADLLHCanalyses

https://github.com/ADL4HEP/ADLLHCanalyses

CutLang runtime interpreter and framework

6

CutLang runtime interpreter:

• No compilation. User writes an ADL file and
runs CutLang directly on events.

• CutLang itself is written in C++, works in any
modern Unix environment.

• Based on ROOT classes for Lorentz vector
operations and histograms.

• ADL parsing by Lex & Yacc.

CutLang framework: interpreter + tools

• Input events via ROOT files.

• multiple input formats: Delphes, CMS

NanoAOD, ATLAS/CMS Open Data, LVL0,
FCC. More can be easily added.

• All event types converted into predefined
particle object types. —> can run the same
ADL file on different input types.

• Includes many internal functions.

• Output in ROOT files: ADL file, cutflows, bins

and histograms for each region in a separate
directory.

• Available in Docker, Conda, Jupyter (via
Conda or binder). (win/lin/mac + portables)

CutLang Github repository: https://github.com/unelg/CutLang 
Comput.Phys.Commun. 233 (2018) 215-236 (arXiv:1801.05727),
Front. Big Data 4:659986, 2021 (arXiv:2101.09031),  
Several proceedings for ACAT and vCHEP

https://github.com/unelg/CutLang
https://arxiv.org/abs/1801.05727
https://arxiv.org/abs/2101.09031

ADL scope

• Event processing: Priority focus!

simple and
composite

object
definitions (jets,

muons, Ws,
RPV stops, …)

event variable
definitions (MT2,

angular variables,
BDTs…)

event selection
definitions

(signal, control,
validation

regions, …)

input:

event

content

output:

event
selection

Event processing…

7

• Analysis results, i.e. counts and uncertainties: Available

• Histogramming: Available => HistoSets, 1D, 2D, variable width...

• Systematic uncertainties: ATLAS type syntax now available.

• Data/MC comparison, limits: Within the scope, implementation being tested.

• Operations with selected events, e.g. background estimation, scale factor derivation: Very

versatile. Not yet within the scope.

Systematics in ADL (ATLAS style)

• All necessary information already in the NTUPLE (incl. up & down variations)

• as event weights (TBranch)

• as full event data (TTree)

8

ON/OFF Name of the UP systematics Name of the DOWN systematics Name of the nominal branch

in
 A

D
L

fil
e

in
 A

D
L

fil
e

ADL helps to design and document a single analysis in a clear
and organized way.

BONUS: Library functions guaranteed to be bug free*

 WYGIWYS analysis, no double counting, correct sorting,
𝝌2 evaluation, combinatorics, unions...

Its distinguishing strength is in navigating and exploring the
multi-analysis landscape.

9

* as much as possible

Uses for analyses written with ADL

10

• Use existing analyses to design new ones:
Answer questions such as

• “Which final states did the existing

analyses look at?”

• “Which final states are unexplored?”

• “How much overlap exists between my

analysis and the existing ones?”

• Use existing objects:

• Directly implement in a new analysis,

compare analyses choices, work with
definition of the same object in different data
tiers.

• Visualize & review analyses:

• Build graphs and tables from analyses using

automated tools. (next page)

• Query analysis or object databases: Answer
via automated query tools questions such as

• “Which analyses require missing ET > at

least 300?”

• “Which analyses use b-jets tagged with

criterion X? ”, “Which muons use isolation?”

• Compare / combine analyses: Determine

analysis overlaps, identify disjoint analyses or
search regions; find the feasible combinations
with maximal sensitivity; automate large scale
combinations of analyses.

• Reinterpretation: Reimplement & validate
analyses for reinterpretation in new models
and parameter space regions.

• Education: Provide a learning database for
students.

Auto-generated graph of an ADL analysis (using graphviz)

11arXiv:2205.09597: CMS Search for Electroweak SUSY in WW, WZ and WH hadronic final states

https://arxiv.org/abs/2205.09597

Flexible Function & Particle Encoding

12

• The current ADL / CutLang structure has been around for ~5 years.

• It has grown into a complex monolithic structure. Adding new variable, function, ... requires lengthy edits

• We are decoupling the grammar from the DSL engine

• Function and particle names should no longer be hardcoded in ADL

• After initial parsing, the DSL should match function and particle names to those within an external library

• This approach has serious advantages:

• This allows for a more flexible system, which does not require direct maintenance on the core code

• Easily link to different function implementations

• Improves portability between data formats

• All attributes (pT, eta, etc…) are removed from the grammar

• New attributes can also be linked from an external library

• Libraries can be specified at the CLI

• ./adl --attr-lib attr.lib --particle-lib part.lib experiment.adl

not yet merged with main branch

DDSXL

13

• After DSL-grammar decoupling, next is multiple grammars for multiple domains.

• We designed a new protocol called Dynamic Domain Specific eXtensible Language (DDSXL)

• it can contain numerous programming languages and frameworks.

• each developer to integrate their own module independently from other modules

• 3 independent developer types: maximum efficiency for the developers

• it allows each micro team to use/integrate solutions they are experts in

• it integrates a domain ecosystem (such as CL) into the development environment

• a set of rules determined through communication over the network.

DDSXL
core

Extension_M
parsing service

sends AST Engine_1
library_1_1

library_1_N

Engine_M
library_M_1

library_M_N

sends
requests

sends response
sends worked reply

client

sends xDL file

sends result file

Extension_1
parsing service AST

response

• DDSXL Core

• main service & entry point, always alive, no dependencies

• all packages register to this service

• Extension (ADL)

• produces an Abstract Syntax Tree (AST) for the associated engine

• Engine (CutLang)

• receives the AST, can do basic arithmetic & logic,

• depends on Library/ies for specific functions

• Library/ies (ML functions, complex kinematic variable functions...)

• offers recipes for specific functions,

• can be many running on different hosts / addresses

DDSXL components

14

• Developer types in DDSXL excosystem

• Core developer: experts in RPC, network communications, etc...

• Extension developer: specializes in parsers, compilers, AST etc...

• Engine developer: experts in the relevant domain that can solve problems

• Library developer: researchers in the relevant domain only

• Status

• Execution protocol steps and technologies to be used are identified

• gRPC (https://grpc.io/) & GraphQL (https://graphql.org/)

• Test servers and clients are written, functionality validated

• Run time library addition successfull

• Development ongoing

DDSXL development & status

15 A type example that extends the algorithm by collecting the types of the cutlang-std
and f-mt2 packages (graphql is used, and the gateway is built on the CutLang engine)

Documentation of graphql types of cutlang-std and f-mt2
packages that extend each other on CutLang engine
(graphql playground tool is used)

An example of an ADL script on the top, and
an example of AST output on the bottom

https://grpc.io/

16

To conclude:

• ADL is an emerging, paradigm-shifting approach that puts

physicists and physics at the center of HEP data analysis

• CutLang is the first successful runtime interpreter for ADL

• Research & education uses confirm the feasibility of ADL

• ADL syntax and tools are under constant development.

• Grammar - DSL Engine being decoupled

• DDSXL protocol is being developed to adress

• ease of development, ease of portability

• application to multiple domains & functions

• Join the mattermost channel to explore ADL/CutLang and
provide feedback:

ADL / CL is a community effort !  
Everyone is welcome to join the development of the language and tools.

ADL

backup slides
1. ADL syntax
2. Use cases
3. Q&A

DDSXL

https://mattermost.web.cern.ch/signup_user_complete/?id=ocuxdq3xabr49p3x5wy1qj9a1y

ADL syntax: main blocks, keywords, operators

17

Block purpose Block keyword
object definition blocks object
event selection blocks region
analysis or ADL information info
tabular information table

Keyword purpose Keyword
define variables, constants define
select object or event select
reject object or event reject
define the mother object take
apply weights weight
bin events in regions bin, bins
sort objects sort
define histograms histo
save variables for events save

Operation Operator

Comparison operators > < => =< == !=

 [] (include)][(exclude)

Mathematical operators + - * / ^
Logical operators and or not

Ternary operator condition ? truecase :
falsecase

Optimization operators ~= (closest to) 
~! (furthest from)

Lorentz vector addition LV1 + LV2

LV1 LV2

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

Syntax also available to write existing analysis results
(e.g. counts, errors, cutflows…).

 
Syntax develops further as we implement
more and more analyses.

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

ADL syntax: functions

18

Standard/internal functions: Sufficiently
generic math and HEP operations could be
a part of the language and any tool that
interprets it.

•Math functions: abs(), sqrt(), sin(), cos(),

tan(), log(), …

•Collection reducers: size(), sum(), min(),

max(), any(), all(),…

•HEP-specific functions: dR(), dphi(), deta(),

m(), ….

•Object and collection handling: union(),

comb()…

External/user functions: Variables that cannot
be expressed using the available operators or
standard functions would be encapsulated in
self-contained functions that would be
addressed from the ADL file and accessible by
compilers via a database.

•Variables with non-trivial algorithms: MT2,

aplanarity, razor variables, …

•Non-analytic variables: Object/trigger

efficiencies, variables/efficiencies computed
with ML, …

ADL syntax rules with usage examples: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/ADL

Physics with ADL

19

Designing new analyses:

• Experimental analyses:

• 2 ATLAS EXO analyses ongoing

• Phenomenology studies:

• E6 isosinglet quarks at HL-LHC & FCC w/

CutLang (Eur Phys J C 81, 214 (2021))

• Analysis of LHC Open Data:

• Tutorial with full implementation of a CMS

vector-like quark analysis with 2015 data for
CMS Open Data workshop : link

• Other exercises for earlier workshops and
the CERN summer student programme.

• Analysis optimization via differentiable
programming (under development).

Using existing analyses:

ADL analysis database with ~15 LHC analyses:  
https://github.com/ADL4HEP/ADLLHCanalyses 
(more being implemented).

Validation of these analyses in progress.

• Reinterpretation studies:

• Integrating ADL into the SModelS framework

• Analysis queries, comparisons, combinations:

• Automated tools under development

• Long term analysis preservation

https://arxiv.org/abs/2006.10149
https://cms-opendata-workshop.github.io/workshop2022-lesson-run2-adlcl/
https://github.com/ADL4HEP/ADLLHCanalyses

ADL allows practical exchange of experimental analysis information with the pheno community.

• Clear description of the complete analysis logic.

• Enables straightforward adaptation from experiments to public input event formats.

• Biggest difficulty is in reproducing an analysis is adapting object definitions:  
In ADL, e.g. just swap experimental object IDs with numeric efficiency maps.

• Event selections stay ~the same (can swap trigger selections with efficiencies)

• Generic structure available for expressing analysis output in the ADL file:  
Data counts, BG estimates, signal predictions —> counts, uncertainties, cutflows.

• Running CutLang puts preexisting results in histograms with the same format as the run
output. —> Direct comparison of cutflows, limit calculations.

• ADL could facilitate providing information on analysis results to HEPDATA or similar platforms.

ADL for reinterpretation

20

but... I like my epicycles!

• This is yet another syntax to learn, valid only for HEP.
• It is english + mathematics + logic.
• will be extended to other data processing jobs too.

• Python is so simple!
• It is not the language but the person who programs with it

• We have lots of Python libraries
• We had lots of horses, yet we use cars now.

• We have Rivet / MadAnalysis / CheckMate
• These are glorified libraries not paradigm shifters

• But I want my students to know Python / C++! It will
help them to find a job.
• If these are Phys students, we should help them do

physics, if they are computero-philes, they should learn
programming from professionals.

• Writing consecutive if statements is not what you want.
Ri

ve
t

MadAnalysis

CheckMate

21

Q & A

