

XRootD caching for Belle II

Moritz Bauer^{*}, Max Fischer, Manuel Giffels, Günter Quast, Matthias Schnepf

Distributed Computing at Belle II

Computing Infrastructure

- Approximately 30 computing sites of varying size in America, Europe and Asia.
- All sites are required to have managed Grid storage which is expensive to support.
- DIRAC and Rucio distribute workloads and files to the different sites.

Analysis jobs depend on input datasets which are not available on every site. Challenges

- Belle II follows a Grid-based analysis workflow: Local analysis & MC production is possible but discouraged.
- Many statistically-dominated analyses which process the entire dataset.
- Smaller sites with CPU resources but without managed storage cannot contribute easily.
- Varying popularity of sites and datasets can lead to uneven workloads and high numbers of waiting user jobs on individual sites.
 - **Rebalancing of replicas using Rucio's dataset popularity feature can help but re**quires manual intervention.

Caching files with XRootD	Monitoring an XRootD XCache instance
A cache server with XRootD ("XCache") [1] retrieves and provides files located at remote sites using the XRootD protocol.	XRootD emits several binary-packed monitoring streams with detailed in- formation about file access and cache information.
Cache server creates local file copies on demand, no manual interven- tions required.	Using the xrootdlib package [2] to unpack the binary streams, key metrics such as access count and file size are passed into an ElasticSearch
No delay is introduced as file blocks can be provided to the computing	database and visualized with Kibana.

- site before the entire file is downloaded.
- A redirector plugin at the computing resource redirects XRootD requests seamlessly to the XCache, no user interaction required.
- Using plugins, XRootD can not only provide files via the XRootD protocol but also via the more widespread HTTP(S)/WebDAV protocol.

Example setup at KIT / GridKa

Resources with COBalD & TARDIS

- These opportunistic resources are flexible and therefore perfect for caching.

Current status

- Technology tested with 500TB cache in front of GridKa storage.

This also allows investigating the performance of the XCache on data subsets.

Next Steps

Cache a remote storage element at "Jozef" Stefan" Institute Slovenia in Ljubljana, (ARC.SIGNET.si).

For details on the technology see poster #30.

Operating for 10 months, jobs running at 6 physical sites behind one Grid CE.

Redirect HTTP(S)/WebDAV requests to the cache via a custom DIRAC pilot.

A preliminary conclusion

Caching with XRootD "XCache" is an easy-to-implement approach for Belle II to decrease job waiting times and increase site utilization!

[1] XRootD: http://xrootd.org [2] xrootdlib: https://github.com/maxfischer2781/xrootdlib

ACAT 2022, Bari, Italy

*moritz.bauer@kit.edu

KIT – The Research University in the Helmholtz Association

