
Of Frames and schema evolution - The newest features of podio
P. Fernandez Declara, F. Gaede, G. Ganis, B. Hegner, C. Helsens, T. Madlener, A. Sailer, G. A. Stewart, V. Volkl

Introduction
● podio is an event data model (EDM) toolkit
● Generate efficient and thread safe c++ code

from a high level description in YAML
● Favor composition over inheritance and use

plain-old-data (POD) types where possible
● Layered design allows for efficient memory

layout and performant I/O implementation
● User Layer consists of thin handles that offer

value semantics
● Support multiple I/O backends

○ ROOT (default), SIO

This project has received funding from the European Union’s Horizon 2020
Research and Innovation programme under grant agreement No
101004761.

podio::Frame Schema evolution

Main Ideas
● Container aggregating all relevant data
● Defines an interval of validity or category for

the contained data
○ Event, Run, readout frame, …

● Offers easy to use and thread safe interface
to access data
○ Immutable read access only
○ Enforced move for insertion

struct Frame {
 /// Get a stored collection
 template <typename CollT>
 const CollT& get(const std::string& name) const;

 /// Put a collection into the Frame. Requires using std::move at the
 /// calling site. For convenience return an immutable reference
 template <typename CollT, /* enable_if machinery to enforce move */>
 const CollT& put(CollT&& coll, const std::string& name);
};

Some Implementation Details
● The podio::Frame is a move-only type
● Type erasure for value semantics and templated get/put functionality

○ Allows constructing from “arbitrary” data
○ Hides policies that affect behavior transparently

Multithreading and I/O concept
● I/O is assumed to be one thread per file
● Readers provide data for a “complete” Frame in (almost) arbitrary format
● Writers request buffers from Frame

○ Ownership stays with Frame
○ Multiple Writers per Frame are possible

● podio provides the basic building blocks for more complex workflows
● Frame I/O versions are implemented for ROOT (TTree) and SIO

○ Different file layouts and capabilities

Completely independent FramesFixed content for Frames of a
given category

C++17 code with value semantics

python bindings via PyROOT

Easy to read ROOT files

podio generated EDMs

Recent developments
● Possibility to extend existing datamodel defintions

○ Used by EIC (extending EDM4hep)
○ Allows for prototyping of new datatypes

● Conversion to JSON output using nlohmann/json
New

To allow for long-term storage PODIO provides the necessary functionality for
schema-evolution.

The description of data models in YAML files allows for an automated analysis of
changes.

Non-trivial changes are reported to the user as errors. Depending on user
demands, those may get supported in the future. As the schema evolution
happens on data read, old files can still benefit from features added later.

Backend Support

For the ROOT backend, PODIO does a sanity check, whether the change is
supported by its automatic schema evolution and forwards the
transformation work to ROOT itself.

For other backends like SIO, PODIO auto-generates transformation code,
which is being called during the Frame read

schemaversion: 1
<...>

ExampleStruct:
 Members:
 - int x
 - double y

<...>

schemaversion: 2
<...>

ExampleStruct:
 Members:
 - int x
 - int y

<...>

Comparing datamodel versions v2 and v1

Found 4 schema changes:
 - 'ToBeDroppedStruct' has been dropped
 - 'ex2::NamespaceStruct' has an addded member 'y'
 - 'ex2::NamespaceStruct' has a dropped member 'y_old'
 - 'ExampleStruct.x' changed type from int to double

Warnings:
 - Definition 'ex2::NamespaceStruct' has a potential member rename
'y_old' -> 'y' of type 'int'.

ERRORS:
 - Forbidden schema change in 'ex2::NamespaceStruct' for 'x' from
'std::array<int, 2>' to 'int'

https://github.com/AIDASoft/podio

