
Evaluating Portable Parallelization Strategies for Heterogeneous Architectures
Mohammad Atif1, Meghna Battacharya1, Paolo Calafiura3, Taylor Childers4, Mark Dewing2, Zhihua Dong1, Oliver Gutsche2, Salman Habib4, Kyle Knoepfel2, Matti

Kortelainen2, Ka Hei Martin Kwok2, Charles Leggett3, Meifeng Lin1, Vincent Pascuzzi1, Alexei Strelchenko2, Vaktang Tsulaia3, Brett Viren1, Tianle Wang1, Beomki

Yeo3, Haiwang Yu1

1Brookhaven National Laboratory, Upton, NY 11973, USA
2Fermi National Accelerator Laboratory, Batavia, IL 60510, USA

3Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
4Argonne National Laboratory, Lemont, IL 60439, USA https://www.anl.gov/hep-cce

Portable Parallelization APIs and Languages

Kokkos: A C++ abstraction layer (library) that supports parallel

execution of the code and data management for different host and

accelerator architectures.

SYCL: A specification for a cross-platform C++ abstraction layer.

Implementations are provided by different vendors/organizations to support

different architectures.

OpenMP: Compiler directive-based programming model for parallel

execution on different host and accelerator architectures.

alpaka: Header only parallel abstraction library that provides low level

control of hardware, targeting CPUs, GPUs and FPGAs

std::execution::pararallel C++ standards based approach to launching

parallel tasks. Still under development by standards bodies, with possible

full integration with C++26.

Experiment Testbeds

WCT – WireCell Toolkit (DUNE): Liquid Argon TPC Simulation
FCS – FastCaloSim (ATLAS): Parametrized LAr Calorimeter Simulation
Patatrack (CMS): Silicon pixel tracker reconstruction
p2r (CMS): Propagate to R track follower
ACTS tracking workflow (ACTS): multistage track finder and following

Metrics

Ease of Learning

novices, C++ developers, GPU experts

Code conversion

CPU → GPU, API → API

Extent of modifications to existing code

Control of main, threading/execution model

Extent of modifications to EDM / Data

Extent of modifications to build rules / system

Hardware Mapping

current and promised future support of hardware

Feature Availability

reductions, kernel chaining, callbacks, concurrency

Address needs of large and small workflows

Long term sustainability and code stability

backward/forward compatibility of API and eg CUDA

Compilation time

Run time

what happens to original CPU code

Ease of Debugging

Aesthetics

beauty is in the eye of the beholder

Interoperability

interaction with externals, thread pools, c++ standards

Performance Studies

Figure 1: FastCaloSim Timings.

HIP Alpaka:HIP Kokkos:HIP SYCL:HIP
Portability Technologies

107

108

109

1010

Th
rou

gh
pu

t (t
rac

ks
/s)

100.0 %
163.23 %

54.26 %

5.05 %

Tested on AMD MI-100
ROCm-5.2.0,bsize=32

CUDA Alpaka Kokkos SYCL std::par(nvc++)
Portability Technologies

107

108

109

1010

Th
ro

ug
hp

ut
 (t

ra
ck

s/
s)

100.0 %
43.93 % 62.67 %

1.23 %

44.1 %

Tested on A100
CUDA-11.6,bsize=32

Figure 2: p2r Timings.

Figure 3: WCT Timings.

Test case Throughput (events/s)
CPU version, 1 thread 13.5 ± 0.2
Kokkos version, Serial execution space 8.5 ± 0.2
CPU version, 40 threads 539 ± 9
Kokkos version, Threads execution space, peak (18 threads) 28 ± 1
CUDA version, peak (9 concurrent events and CPU threads) 1840 ± 20
CUDA version, 1 concurrent event 720 ± 20
CUDA version, 1 concurrent event, memory pool disabled 159 ± 1
Kokkos version, CUDA execution space 115.7 ± 0.3

Table 1: Patatrack Timings

Kokkos

similar learning curve to
CUDA
needs explicit init/finalize
crafting SoAs with views is
tedious
no support for jagged arrays
long templates make
debugging hard
need to explicitly define
backends at compilation
no generic use of concurrent
kernels
well established
strong developer community
and prompt backend support

SYCL

can target all hardware
backends from same source,
though recompilation or
different compiler versions
required
near native performance
more verbose than CUDA, but
similar to Kokkos for memory
management when using
buffers
callbacks may not be
supported in future, no
concurrent kernels
good cmake integration
strong support by Intel,
pushing towards integration in
C++ standards

OpenMP

easy to implement, does not
require major changes to the
C++ code
performance varies from
compiler to compiler
specialized operations (e.g.
atomic) less performant than
CUDA
does not support GPU scan
operation
under active development
architecture agnostic compiler
directives can offload to
multiple GPUs, FPGAs

std::par

plain C++ - low entry bar for
developers
cannot access low level GPU
features
memory transfers restricted to
USM
unless kernels have a direct
thrust counterpart, not as
performant as CUDA
no asynchronous operations
no ability to specify kernel
execution parameters
(block/grid size)
compilers still under
development, can be buggy
C++ standards compliant

alpaka

Header-only C++ library
Single-source programming
model (kernels are embedded
in application code)
At compilation alpaka kernels
are transformed into native
kernels. Achieves
compatibility with the vendor
ecosystem (e.g., debugging
tools)
Low-level and powerful API.
Not always super-intuitive
Heavy usage of C++
template meta-programming.
The application code tends to
be quite verbose

Work supported by US Department of Energy, Office of Science, Office of High Energy Physics under the High Energy
Physics Center for Computational Excellence (HEP-CCE), a collaboration between Argonne National Laboratory, Brookhaven
National Laboratory, Fermilab and Lawrence Berkeley National Laboratory. ACAT2022, 10/23/2022-10/28/2022


