1. Motivation

During the LHC Run 2, the LHCb experiment has spent more than 80%
of the pledged CPU time to produce simulated samples. Run 3 CPU re-
source needs will far exceed the computing resources available to the
LHCb Collaboration, that is spending huge efforts in developing faster
options for simulation, like the new Lamarr framework.

2. What is Lamarr?

The new ultra-fast simulation framework for LHCb is named Lamarr’

and is embedded within the LHCb simulation framework Gauss. Lamarr

consists of a pipeline of (ML-based) modular parameterizations de-
signed to replace both the physics simulation and the reconstruction

steps.

Compatibility with LHCb-tuned generators (e.g. Pythia8, Particle
Guns);

Promotion of generator-level particles to successfully recon-
structed candidates;

Possibility of submitting Lamarr jobs through the LHCb distributed
computing middleware Dirac;

Capability of producing datasets with the same persistency format
as the LHCb physics analysis framework DaVinci.

1 The framework name comes from Hedy Lamarr, that was an Austrian-born American
film actress and inventor. Read more on Wikipedia.

3. Pipeline of modular parameterizations
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Schematic representation of the modular pipeline provided by Lamarr to transform
information from generators into high-level quantities.
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4. ML-based parameterizations

Efficiencies: Gradient Boosted Decision Trees (GBDT) trained on simu-
lated data to predict the fraction of accepted / reconstructed / se-
lected candidates.

High-level quantities: Conditional Generative Adversarial Networks
(GAN) trained on either simulated or calibration data to synthetize the
high-level response of LHCb sub-detectors.

5. Model deployment within Gauss

Best-performing parameterizations can easily replace specific modules
without recompiling the whole pipeline using the deployment tool
scikinC.

scikinC translates ML-based models to be dynamically linked to the
main application (Gauss). In this way, parameterizations can be devel-
oped and released independently.

Train a model;

Transpile the model to a C file with sciking;

Compile the C file to a shared object;

Link the shared object to the LHCb simulation software;
Produce simulated samples.

6. Validation campaign

Lamarr is currently under validation, comparing the distributions of
the analysis-level reconstructed quantities parameterized with what
obtained from detailed simulation for A) — A1~ X decays with

AT - pK 7.

o Decay abundantly produced in the LHCb acceptance, widely studied,
and also utilized as PID calibration sample;

e Itis described by a complex decay model including many feed-
down modes;

o It provides examples for muons, pions, kaons and protons in a sin-
gle decay mode.
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A mass obtained from Pythia8 (left) and Particle Gun (right) generators by Lamarr
against detailed simulation. Reproduced from LHCB-FIGURE-2022-014.
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7. Results: Tracking system

The momentum and the point of closest approach to the beams at
generator-level get smeared: GAN-based model is used to parameter-
ize multiple scattering and residual detector effects (alignment,
calibration).

Track reconstruction uncertainties rely on dedicated GAN-based
model. Correct modeling track uncertainties is essential for LHCb

analyses: e.g., the impact parameter (IP) is a common discriminator
between prompt and displaced vertices.

Output quantities can be used within LHCb offline reconstruction to
compute higher-level quantities, like the reconstructed mass.
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Proton impact parameter (IP) x2 obtained from Pythia8 (left) and Particle Gun (right)
generators by Lamarr against detailed simulation. Reproduced from LHCB-FIGURE-
2022-014.

8. Results: PID system

Smeared track kinematics and detector occupancy are used by two
sets of GAN-based models to parameterize the high-level response of
the RICH and MUON systems.

Further GAN-based models are trained to reproduce the higher-level

PID classifiers typically used in physics analyses, relying only on the
input and the output of RICH and MUON parameterizations.

The adopted stacked GAN structure is designed to simulate both sin-
gle-system detector response (RICH and MUON) and higher-level PID
classifiers, enabling analysts to define new higher level classifiers
based on the underlying basic quantities.
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Proton identification efficiency obtained from Pythia8 (left) and Particle Gun (right)
generators by Lamarr against detailed simulation. Reproduced from LHCB-FIGURE-

2022-014.
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9. Timing performance

Overall time needed for producing simulated samples has been ana-
lyzed for fully detailed simulation (Geant4-based propagation) and
Lamarr. Lamarr timing is dominated by particle generation (Pythia8).

Preliminary studies show that Lamarr ensure a CPU reduction of at
least 98% for the physics simulation phase. Further improvement in
timing can be achieved tacking the generation, as shown when using
Particle Guns (e.g. only generating signal of interest).

Detailed simulation: Pythia8 + Geant4
1M events @ 2.5 kHS06.s/event =~ 80 HS06.y

Ultra-fast simulation: Pythia8 + Lamarr
1M events @ 0.5 kHS06.s/event =~ 15 HS06.y

Ultra-fast simulation: Particle Gun + Lamarr
100M events @ 1 HS06.s/event =~ 4 HS06.y

10. Conclusions and outlook

Great progress has been made on developing a fully parametric simu-
lation of the LHCb experiment, aiming to reduce the pressure on the
CPU computing resources.

Model development, tuning and specialization will continue taking full
advantage of opportunistic GPU resources made available to the LHCb
Collaboration.

o Further speed improvements under study;

e Thread safety for multithreaded Gaudi algorithms under
development.
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