
ACAT 2022

Contribution ID: 194 Type: Poster

Integration of machine learning-trained models into
JUNO’s offline software

Wednesday, 26 October 2022 11:00 (30 minutes)

The Jiangmen Underground Neutrino Observatory (JUNO) is under construction in South China and will start
data taking in 2023. It has a central detector with a 20-kt liquid scintillator, equipped with 17,612 20-inch PMTs
(photo-multiplier tubes) and 25,600 3-inch PMTs. The requirement on energy resolution of 3\%@1MeV makes
the offline data processing challenging, so several machine learning based methods have been developed for
reconstruction, particle identification, simulation etc. These methods are implemented with machine learning
libraries in Python, however, the offline software is based on a C++ framework called SNiPER. Therefore, how
to integrate them and run the inference in offline software is important.

In this contribution, integration of machine learning-trained models into JUNO’s offline software will be pre-
sented. Three methods are explored: using SNiPER’s Python binding to share data between C++ and Python;
using native C/C++ APIs of the machine learning libraries, such as TensorFlow and PyTorch; using ONNX
runtime. Even though SNiPER is implemented in C++, it provides Python binding via Boost Python. In re-
cent updates of SNiPER, a special data buffer is implemented to share data between C++ and Python, which
makes it possible to run machine learning methods in following way: a C++ algorithm reads event data and
converts them to \texttt{numpy} arrays; a Python algorithm then accesses these \texttt{numpy} arrays and in-
vokes machine learning libraries in Python; finally, the C++ algorithm puts the results into event data. For the
native C/C++ APIs of machine learning libraries and ONNX runtime, a C++ algorithm is used to convert the
event data to the corresponding formats and invoke the C/C++ APIs. The deployments of the three methods
are also studied: using SNiPER’s Python binding is the most flexible method for users, as users could install
any Python libraries using \texttt{pip} by themselves; using native C/C++ APIs requires the users to use the
same versions in JUNO official software release; using ONNX runtime only requires users to convert their
own models to ONNX format. By comparing the three methods, ONNX is recommended for most of users
in JUNO. For developing and testing of machine learning-models in offline software, developers could choose
the other two methods.

Significance
As a JUNO L3 manager for software release, I try to deploy the C/C++ API of the native machine learning
libraries into JUNO offline in several years ago. But the requirements from developers are different, such as
one uses TF 1.x, while another one uses TF 2.x. So that drives our core software group to find some more
generic solutions. As mentioned in the abstract, SNiPER provides a data buffer, which could be accessed from
both C++ and Python side. This feature lets us do the data conversion in C++ and do the inference in Python.
Recently, we also notice that the ONNX is popular, such as Geant4 includes an example using ONNX. So we
also apply it in our software.

References
1. An example to show the data interoperability in C++ and Python: https://github.com/JUNO-collaboration/offline-

example-pyalg

Experiment context, if any
JUNO

Primary authors: Mr ZOU, Jiaheng; LIN, Tao (Chinese Academy of Sciences (CN)); Dr LI, Teng (Shan-
dong University, CN); Dr LI, Weidong (Chinese Academy of Sciences (CN)); HUANG, Xingtao (Shandong Univer-
sity)

Presenter: LIN, Tao (Chinese Academy of Sciences (CN))

Session Classification: Poster session with coffee break

Track Classification: Track 1: Computing Technology for Physics Research

