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RNTuple and Intel DAOS Performance Evaluation

With future colliders projected to generate 10X as much event data,
RNTuple is ROOT's I/0 subsystem for next-generation HENP analysis,
targeting:

m | ow-latency, high-bandwidth NVMe devices

= Asynchronous and concurrent bulk /0

m Distributed object stores

RNTuple's storage layer can be specialized for different storage sys-
tems to leverage HPC data centers, e.g., object stores 2] 1n this work,
we present significant improvements to RNTuple's DAOS backend.

On-disk, RNTuple has a columnar data storage model organized In
pages, page groups and clusters (Figure 1). For key-value stores, we
provide a remapping of RNTuple pages to DAOS objects.
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Fig. 1: RNTuple’s on-disk format

What is DAOS?
m Open-source object store for massively distributed NVM devices
= Highly scalable storage due to simple objects (Figure 2)

m dkey impacts data co-locality in pool shard
= akey specifies value within {object, dkey}

m Storage system for Argonne’s Aurora exascale supercomputer
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Fig. 2: Simplified DAOS top-level organization

Efficient Storage of HENP data in DAOS

One of the expected uses of object stores Is as a transient storage
for distributed analysis. Thus, our improvements 1] are designed to
shorten the data import stage.

1. Vector writes, i.e., committing a vector of buffered page groups in
a single call, allowing for parallelized writes

2. Coalesced R/W requests by {object, dkey} to minimize 1/0
calls and exploit target parallelization

3. Improved RNTuple <+ DAOS mapping preserving page co-locality,
tuned for typical HENP analysis patterns:

cluster — object, column — dkey, page s akey

4. Server-side concatenation of row-adjacent values into page chunks
targeting near-optimal throughput independently of native page
size by associating multiple IOVs per akey (Figure 3).

5. And more: better event management, many ntuples per container
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Fig. 3: Multiple 10 vectors (I0Vs) are associated to a key in the object store

Dataset: LHCb OpenData B2HHH, with 8.5 million events spanning 26
branches, replicated tenfold for a total size of 15 GB.

Evaluation:
= with/out compression (zstd)
m Mapping-0: {page, Ry, Ry} — {0bject, dkey, akey}
» Mapping-1: {cluster, column, page} — {object, dkey, akey}

We measured (single thread, Infiniband RDMA):
= Throughput measured during data import into DAOS, in GB/s
m End-to-end analysis throughput from storage to histogram, in GB/s

Plot (1.a): write throughput (no compr.)  Plot (1.b): read throughput (no compr.)
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Plot (2.a): LHCb B2HHH (no compr.) Plot (2.b): LHCb B2HHH (zstd compr.)
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Conclusions

Our results show the latest improvements in the DAOS backend,
which facilitate high-throughput distributed analyses in HPC centers.

= OQver 5 times the R/W throughput for data import and end-to-end
realistic HENP analysis with native 64 kB pages;

m Object-based storage made independent of an ntuple’s native
configuration (page, cluster sizes)

Next steps:

m Extended evaluation of multi-threaded, distributed analysis with
ROOT's RDataFrame in order to saturate the link layer

m Storage support for Amazon S3 object store
m Optimized vector writes for RNTuple's file backend

RNTuple 1s scheduled to become production grade in 2024. We ap-
preciate the first experiments implementing RNTuple writers in their
workflows, providing feedback on features and performance.
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