
RNTuple: Towards First-Class Support for HPC data centers
Giovanna Lazzari Miotto ⋆

Universidade Federal do Rio Grande do Sul (BR)
Javier Lopez-Gomez †

EP–SFT, CERN

RNTuple and Intel DAOS

With future colliders projected to generate 10× as much event data,
RNTuple is ROOT’s I/O subsystem for next-generation HENP analysis,
targeting:

Low-latency, high-bandwidth NVMe devices
Asynchronous and concurrent bulk I/O
Distributed object stores

RNTuple’s storage layer can be specialized for different storage sys-
tems to leverage HPC data centers, e.g., object stores [2]. In this work,
we present significant improvements to RNTuple’s DAOS backend.

On-disk, RNTuple has a columnar data storage model organized in
pages, page groups and clusters (Figure 1). For key-value stores, we
provide a remapping of RNTuple pages to DAOS objects.

… …
Header Page

Cluster

FooterPage List

Page Group

struct Event {

int fId;

vector<Particle> fPtcls;

};

struct Particle {

float fE;

vector<int> fIds;

};

Fig. 1: RNTuple’s on-disk format

What is DAOS?
Open-source object store for massively distributed NVM devices
Highly scalable storage due to simple objects (Figure 2)
dkey impacts data co-locality in pool shard
akey specifies value within {object, dkey}

Storage system for Argonne’s Aurora exascale supercomputer

DAOS pool DAOS container
dkey akey value
dkey1 … …

dkey akey value
dkey1 … …
dkey2 … …
dkey1 … …

DAOS object

Target 1

Target 2

...
Target n

Fig. 2: Simplified DAOS top-level organization

Efficient Storage of HENP data in DAOS
One of the expected uses of object stores is as a transient storage
for distributed analysis. Thus, our improvements [1] are designed to
shorten the data import stage.

1. Vector writes, i.e., committing a vector of buffered page groups in
a single call, allowing for parallelized writes

2. Coalesced R/W requests by {object, dkey} to minimize I/O
calls and exploit target parallelization

3. Improved RNTuple↔ DAOS mapping preserving page co-locality,
tuned for typical HENP analysis patterns:

cluster ↦→ object, column ↦→ dkey, page ↦→ akey

4. Server-side concatenation of row-adjacent values into page chunks
targeting near-optimal throughput independently of native page
size by associating multiple IOVs per akey (Figure 3).

5. And more: better event management, many ntuples per container

Page 1 Page 2 Page n…

[0] [1] [2] … … … [i]Array of IOVs for
a single akey

Fig. 3: Multiple IO vectors (IOVs) are associated to a key in the object store

Performance Evaluation

Dataset: LHCb OpenData B2HHH, with 8.5 million events spanning 26
branches, replicated tenfold for a total size of 15 GB.

Evaluation:
with/out compression (zstd)
Mapping-0: {page, kd, ka} ↦→ {object, dkey, akey}

Mapping-1: {cluster, column,page} ↦→ {object, dkey, akey}

We measured (single thread, Infiniband RDMA):
Throughput measured during data import into DAOS, in GB/s
End-to-end analysis throughput from storage to histogram, in GB/s

64
128

256
512

1,024
2,048

0

1

2

3

4

5

6

7

Page size (kB)
GB
/s

Plot (1.a): write throughput (no compr.)

Mapping-1, 1MiB chunk per akey
Mapping-1, single page per akey
Mapping-0, single page per akey

Original implementation (mapping-0)

64
128

256
512

1,024
2,048

0

1

2

3

4

5

6

7

Page size (kB)

GB
/s

Plot (1.b): read throughput (no compr.)

Mapping-1, 1MiB chunk per akey
Mapping-1, single page per akey
Mapping-0, single page per akey

Original implementation (mapping-0)

Write Read
0
1
2
3
4
5
6
7

GB
/s

Plot (2.a): LHCb B2HHH (no compr.)

Write Read
0
1
2
3
4
5
6
7

GB
/s

Plot (2.b): LHCb B2HHH (zstd compr.)

Original implementation (64 kB pages) Best result (1MiB chunks)

Conclusions
Our results show the latest improvements in the DAOS backend,
which facilitate high-throughput distributed analyses in HPC centers.

Over 5 times the R/W throughput for data import and end-to-end
realistic HENP analysis with native 64 kB pages;
Object-based storage made independent of an ntuple’s native
configuration (page, cluster sizes)

Next steps:
Extended evaluation of multi-threaded, distributed analysis with
ROOT’s RDataFrame in order to saturate the link layer
Storage support for Amazon S3 object store
Optimized vector writes for RNTuple’s file backend

RNTuple is scheduled to become production grade in 2024. We ap-
preciate the first experiments implementing RNTuple writers in their
workflows, providing feedback on features and performance.

Acknowledgments: This work benefited from support by the CERN Strategic R&D Pro-

gramme on Technologies for Future Experiments CERN-OPEN-2018-006. Access to the hard-

ware for the experimental evaluation was provided by Hewlett-Packard Enterprise.

References
[1] root-project PRs: #10795, #10860, #10927, #10944, #10982, #11466
[2] Exploring Object Stores for High-Energy Physics Data Storage.

https://doi.org/10.1051/epjconf/202125102066

⋆ <glmiotto@inf.ufrgs.br> † <javier.lopez.gomez@cern.ch>

https://github.com/root-project/root/pull/10795
https://github.com/root-project/root/pull/10860
https://github.com/root-project/root/pull/10927
https://github.com/root-project/root/pull/10944
https://github.com/root-project/root/pull/10982
https://github.com/root-project/root/pull/11466
https://doi.org/10.1051/epjconf/202125102066

