
Disk OSD
NVMe OSD

server

Disk OSDDisk OSDDisk OSDDisk OSD
Disk OSD

server

mon
mgr
mds

mon
mgr
mds

Cephfs
Client

File system metadata
journal (RADOS)

File data (RADOS)
File
system
metadata
queries &
updates

mds

mon

mgr

Private network
Service
discovery

Service
discovery

rgwrgw

S3 Clients

S3 protocol (https)

Object metadata,
object data (RADOS)

Object
data
(RADOS)

File system
usersPOSIX

filesystem APIs
XRootD
clients

XRootD

Object Stores for CMS data

Data volume

order of magnitude

[bytes]

EDM file format

A file in ROOT format with an Events TTree and extra metadata. Each data
product is a TBranch in the TTree. Some data product branch elements are
further split into smaller columns for improved compression, but a product
is accessed as one unit within the CMS offline software framework. TBranch
objects reference several TBaskets, which contain serialized data products
for a range of events.

On disk

On tape

Primary dataset

Abstract, “what kind of events.”

e.g. hard scatter process for simulation, trigger filter for data

AOD

Data columns pertaining to
low-level reconstruction

MiniAOD

Calibrated physics objects

Particle-flow candidates …

.root
1e9/file

1e6/event 1e5/event

.root
1e9/file

Legend

Test cluster

A pilot cluster has been assembled to gain
experience in managing a Ceph installation. Nine
servers provide 2 PB of HDD, and two servers
provide 20 TB of NVMe for metadata. All
machines have 10 to 100Gbps networking. The
cluster supports filesystem and S3 object access
mechanisms. An xrootd server exposes the
filesystem to hosts within the Fermilab network.

Object data format

One index object holds metadata for an entire primary dataset. For each data product, or column of data, a stripe of events
is written as an object in an S3 bucket. Each event data product is serialized with standard ROOT IO. The stripe size is
chosen on first write, once the compressed output buffer reaches a target size (100k-1MB) and the number of events evenly
divides the event batch size. The index object may eventually be replaced by a database, to more easily add and remove
products. The metadata volume grows as (N products) + (M events) despite the N*M growth of the number of stripes.

S3 I/O software prototype

The HEP-CCE root_serialization project provides a C++ framework for performance experiments with various I/O packages from
within a multi-threaded program. The program mimics behaviors common for HEP data processing frameworks. Within this
framework, the S3Source and S3Outputer modules have been developed to read from and write to S3 buckets, respectively. This
allows to explore the performance and parallelization behavior of writing to an Ceph S3 service in comparison to local files with
ROOT or other formats.

The S3 protocol is implemented with libs3. Requests are run asynchronously in a separate thread from the Intel Thread Building
Blocks (TBB) thread pool that is used for all other tasks. Network errors are handled with an exponential backoff retry mechanism.
The task graphs below illustrate module behavior for a configuration with two lanes, effectively TBB task groups (blue and green
nodes.) The same number of lanes, threads, and task groups is used in all tests. In this example, product 1 has stripes written
every 4 events, while product two has stripes written every two events. Tasks in queues are run sequentially, with dashed arrows
indicating the order. Object stripe read events gather a set of pending tasks that are released once the data has been received.

Lane 1Lane 2

Event collation queue

P1 output queue P2 output queue

Read, process E1

E1P1 serialized E1P2 serialized

E1 ready

E1 finished

Set E1=i1

Read, process E3

E3P1 serialized E3P2 serialized

E3 ready

E3 finished
Flush event indexSet E3=i4

End job

Read, process E2

E2P1 serialized E2P2 serialized

E2 ready

E2 finished Set E2=i2

Read, process E4

E4P1 serialized E4P2 serialized

E4 ready

E4 finished

Set E4=i3

Start job

Append E1P1 Append E1P2

Append E2P1 Append E2P2
Write P2S0

Append E4P1 Append E4P2

Append E3P1
Write P1S0

Append E3P2
Write P2S2

Lane 1

Lane 2

Fetch P1S0Fetch P2S0

Fetch P2S2

Input read queue

Request next event

E1P1 deserializedE1P2 deserialized

Get i0=E1

Process E1

Request next event

E4P1 deserializedE4P2 deserialized

Get i2=E4

Process E4

End job

Request next event

E2P1 deserializedE2P2 deserialized

Get i1=E2

Process E2

Request next event

E3P1 deserializedE3P2 deserialized

Get i3=E3

Process E3

wait

wait

wait

wait

wait

wait

wait

wait

Start job S3OutputerS3Source

Label convention:

E* = Event number

P* = Product (column) index

i* = Global index

S* = Stripe starting at global index

Product 1
index 0-2

…

Performance tests

A set of tests where all data products in the MiniAOD tier are read and written as fast as possible was performed. The
executable’s thread scaling properties are probed, with the metric being the events processed per second. In the full
chain test, events are: read, decompressed, deserialized, serialized, compressed, and written. For the read-only chain,
only the first three steps are performed. Tests were run on a 24-core machine with 10Gbps network connection to the
Ceph cluster. These tests show good scaling behavior with increased thread count.

The tests are performed for two configurations of event batch size and target stripe size. For each, the source and
output modules target one of three S3 buckets with different Ceph pool configurations: an erasure coded configuration
with 4 data blocks (4kiB) and 2 parity blocks (EC4+2), the same configuration with the bucket index disabled (about
300b metadata per object stored in 3x replicated NVMe pool), and a triple-replicated pool (Rep3).

Format KB per event

MiniAOD input 55.7

Objects:
- event batch size 720
- target stripe size 128kiB

71.4 + 6%

Objects:
- event batch size 720
- target stripe size 512kiB

70.6 + 2%

• Object data formats provide new data management capabilities
- Compared to current tier-based EDM file model
- Reduce disk storage requirements for re-processing, obviate the need to define data tiers
• In a prototype framework accessing a Ceph S3 service, I/O performance is excellent
- On-disk data and metadata volume is as expected
• To fully utilize, more software development will be needed
- New data management service requirement: column tracking
- Full data format requires provenance and auxiliary data handling

Index object

Product 1
metadata

Product 2
metadata

Product 3
metadata

…

Event batch
index

EventID

…
EventID

Event batch
index

EventID

…
EventID

…

Product 1
index 2-4

Product
2 index

0-4

…

Product 3 index 0

…

Product 3 index 1

Product 3 index 2

Product 3 index 3

AOD-like columns MiniAOD-like columns

Pr
od

uc
t 4

 in
de

x
0-

8

…

Pr
od

uc
t 5

 in
de

x
0-

8

…

Pr
od

uc
t 6

 in
de

x
0-

16

…

…

Pr
od

uc
t g

ro
up

 in
de

x
0-

16

To handle very
small products,
we envisage using
product groups.
At present, small
product buffers
are force-flushed
every event batch.

The format has a total size higher than an
example MiniAOD input due primarily to using
ZSTD compression instead of LZMA. Small
objects in Ceph incur additional storage
overhead (listed in % on right) due to the object
size granularity.

ACAT 2022

Nick Smith, Bo Jayatilaka, David Mason,
Oliver Gutsche, Alison Peisker, Robert
Illingworth, Chris Jones (FNAL)

Work supported by the US-CMS HL-LHC R&D initiative, and
Fermi Research Alliance, LLC under Contract No. DE-
AC02-07CH11359 with the U.S. Department of Energy, Office
of Science, Office of High Energy Physics.

Tier-based scheme
MiniAOD Data product KB per event

v1 v2

packed+pruned genParticles 5.7 5.7
slimmedElectrons 1.3 1.3

Others 48.7 48.7

Total 55.7 55.7

Object store scheme
Data product KB per event

v1 v2
packed+pruned genParticles 5.7 -
slimmedElectrons 1.3 -
Others 48.7 -
Updated slimmedElectrons - 1.3
Total 55.7 1.3

Significant improvements in long-term
disk storage needs can be realized
with an object store scheme. In a
mock example, two MiniAOD versions
(v1, v2) were produced from the same
parent dataset, where the latter was
produced to update electron data. In
the object store scheme, there is no
need to re-produce other (unchanged)
data products. In any case, data
products such as genParticles would
never need reproduction. Size/event figures from CMS 2017 UL semileptonic TTBar simulationFigures from CMS 2017 UL QCD simulation

In the diagram to the right,
each TBasket accessed by
a CMS workflow reading
MiniAOD is represented as a
rectangle, where the height
is the number of events and
width is proportional to the
compressed bytes. The top
6 largest MiniAOD products
represent half of the file size.
Unfilled rectangles represent
baskets that were not
accessed.

The distribution of basket
sizes varies over three
orders of magnitude.

Infrequently used column
stripes could be concatenated
into a file and offloaded to
tape systems.

A cat

1e5

1e5

Comparison to an input source similar to that used in a
CMSSW grid job, where the input is read (either on-site or
remotely) via xrootd. The xrootd server has CephFS mounted
and is accessing a pool with the same erasure coding setup
as the S3 source. In addition, a PDS source (file format with
concatenated serialized events) is compared. For this test,
data is read and discarded.

Da
ta

 ti
er

s

Raw read and write
performance of the
c luster is wi th in
expectation given
the current hardware
configuration. Here
we are testing the
performance of a
pure-I/O workload to
an erasure-coded
pool.

