

UNIVERSITÀ DEGLI STUDI DI BRESCIA

Long Short-Term Memory Networks and Bayesian Inference for Time-Evolving Systems: an Industrial Case

D. Pagano UNIVERSITÀ DEGLI STUDI DI BRESCIA & INFN PAVIA

21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research

Istituto Nazionale di Fisica Nucleare

Physicists and Industry

- of Applied Nuclear Physics (https://anplab.unibs.it/)
 - ALICE @ LHC, muography, CRNS, ...
 - statistics, machine learning (ML), metaheuristic algorithms, ...
- the Brescia area

RANK	CODE	NUTS-3	% value added in industry	% persons employed in industry	Persons employed in industry (thousands)	Value added in industry per person employed	T
1	ITC47	Brescia	30,7%	31,1%	167,7	60.268	
2	ITC46	Bergamo	34,1%	34,3%	156,3	62.254	
3	DE913	Wolfsburg, Kreisfreie Stadt	73,2%	47,8%	55,6	155.315	
4	ITH32	Vicenza	35,4%	38,3%	161,8	53.259	
5	DE112	Böblingen	50,2%	34,1%	72,4	106.086	

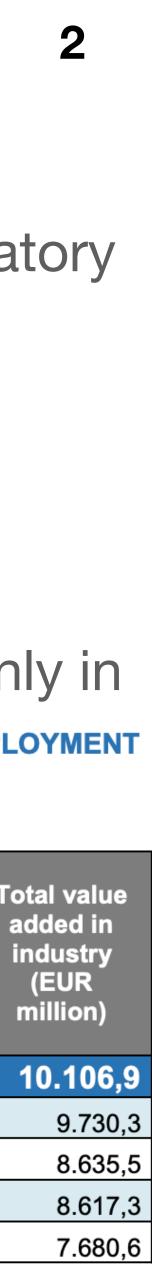
- data analysis
- development of ML tools
- predictive maintenance
- educations, ...

Davide Pagano

About myself: Particle physicist, Professor at the University of Brescia, Head of Laboratory

Over the years I collaborated (trough research contracts) with some big industries, mainly in

MAIN EU NUTS-3 REGIONS WITH STRONG SPECIALIZATION, HIGH VALUE ADDED AND LARGE EMPLOYMENT IN INDUSTRY: YEAR 2011 (Industry excluded construction. NUTS-3 Regions ranked by total value added in industry) Source: compiled by Fondazione Edison and Confindustria Bergamo on data from Eurostat)



The industrial case

Heavy industry factory (Note: because of a NDA I won't share any detail about the company and their data)

Goal: development a *predictive maintenance* system for a sector of their plant, based on data from the already available sensors

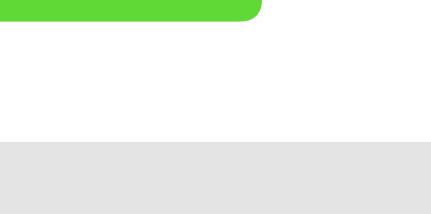
cost

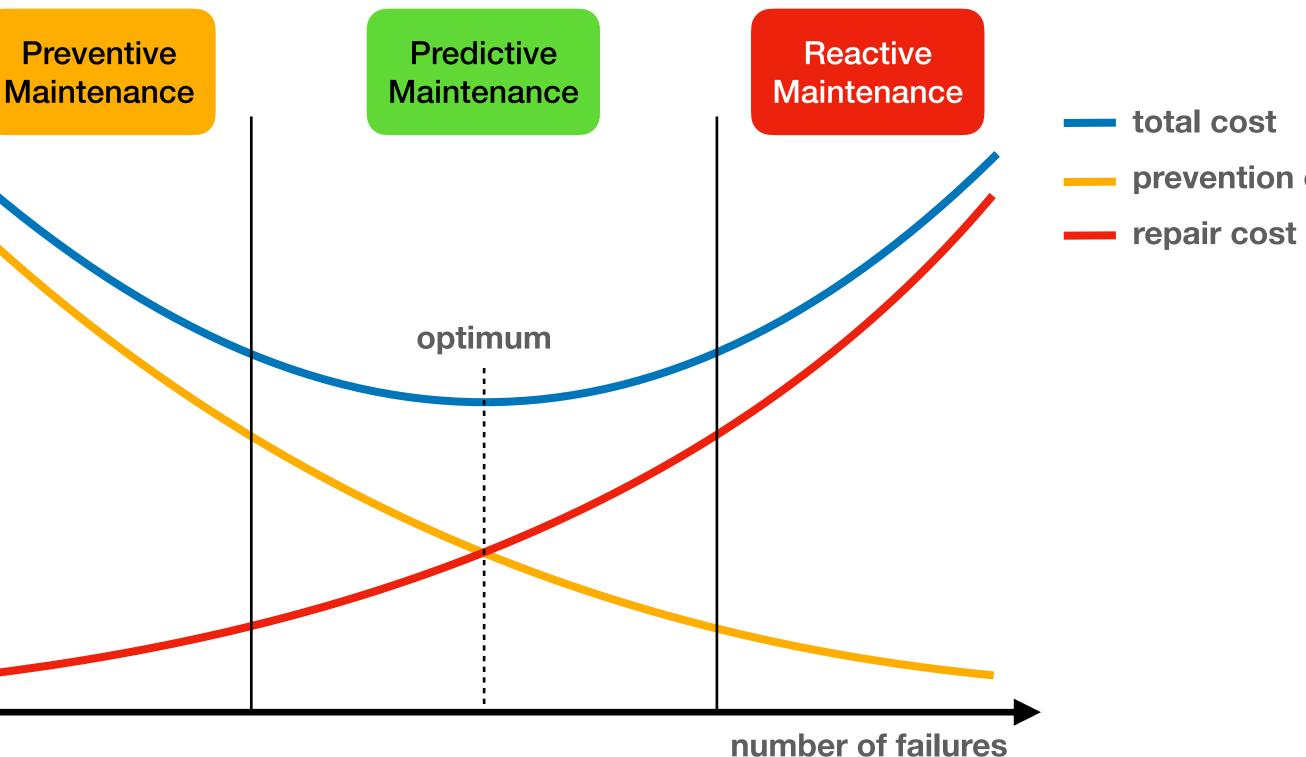
Reactive Maintenance

Preventive Maintenance

Predictive Maintenance

Davide Pagano





The tricky industrial data (a physicist perspective) ⁴

- frequencies
- Data **NOT** ready to use...
 - meaning of many variables unknown
 - problems of oversampling/under-sampling

 - missing values, reading errors, ...
- Data size (for this particular case): ~10 GB/month

Davide Pagano

Data from different sources using different protocols (MQTT, OPC UA, SQL, IBA, ...)

Hundreds (thousands if the whole plant is considered) of **time series** sampled at different

unreliable variable names and changes of variables names over time

Data preparation

zero and near-zero variance predictors

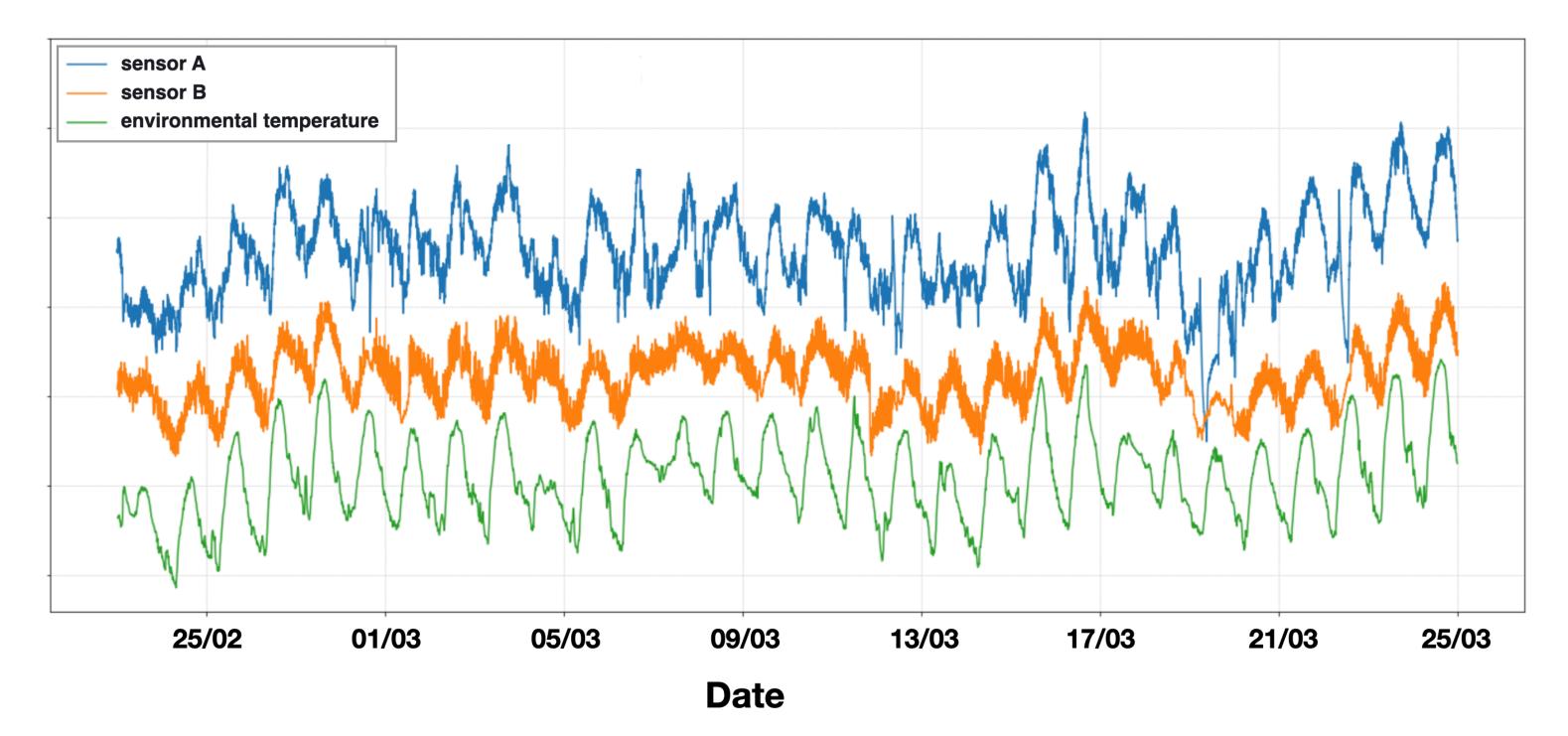
fully correlated predictors

missing values

error readings

oversampling

uninformative sensors



Davide Pagano

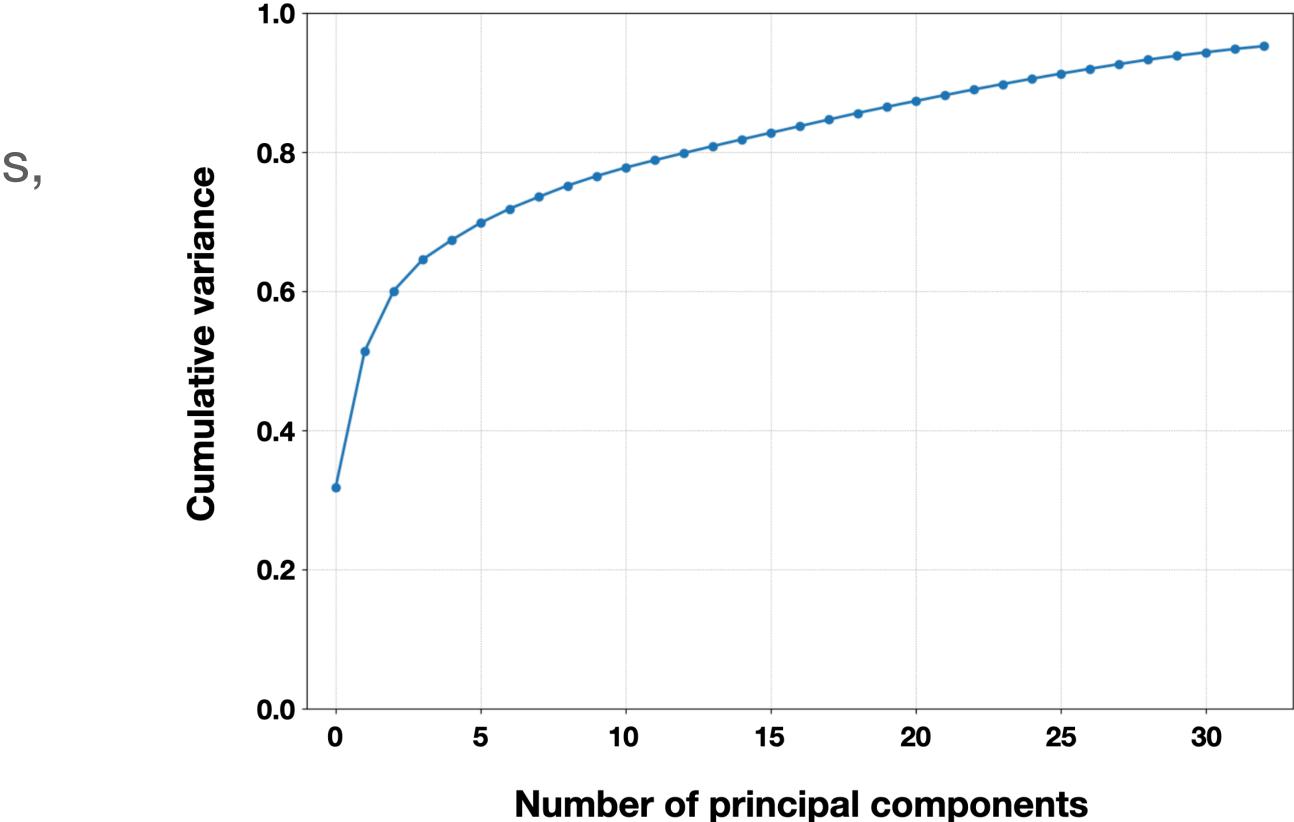
For each active component of the plant (motors and other moving parts) we handled:

Variable selection

- PCA: orthogonal linear transformation of data to a new coordinate system
 - The new variable with the greatest variance is projected on the first axis, the second greatest on the second axis and so on...
- A cumulative variance, between 85% and 90%, was used to choose the number of principal components
- Up to 75% of data reduction

Davide Pagano

For each active component of the plant a principal components analysis was performed

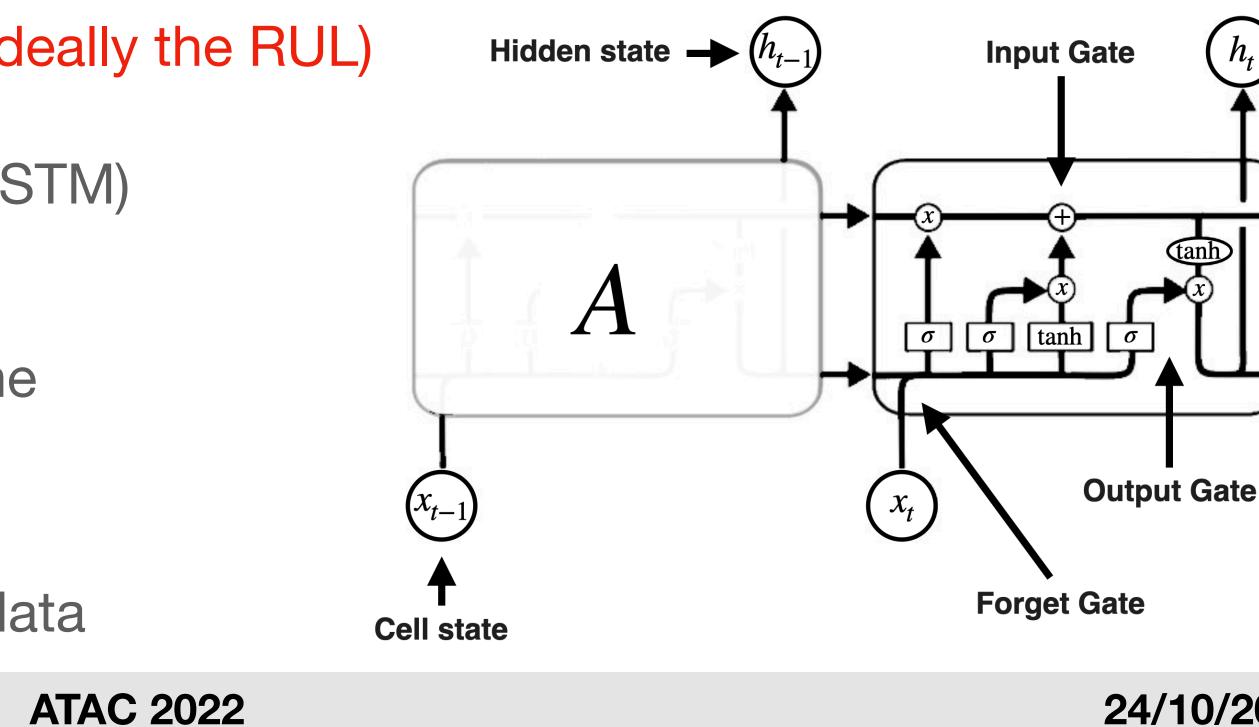


Model for data

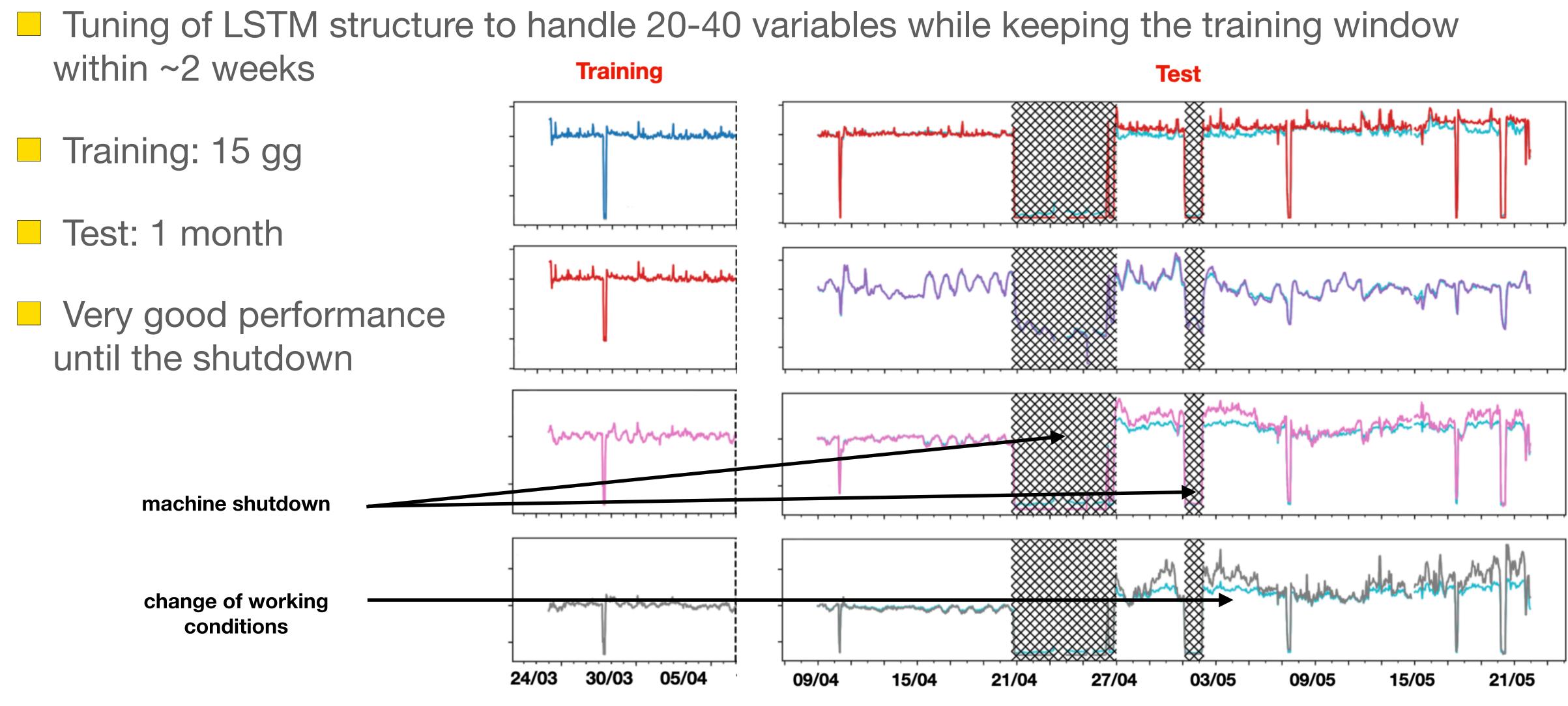
- An industrial plant is a time-evolving system: data are time series
- working condition
 - Anomaly detection
 - Assess the "health" of the plant (ideally the RUL)
- We used a Long short-term memory (LSTM) neural network
 - A recurrent neural network with the capability of a long-term memory
 - Very well-suited for making predictions based on time series data

Davide Pagano

Goal: time series forecasting with a model describing the system in a (supposedly) "good"



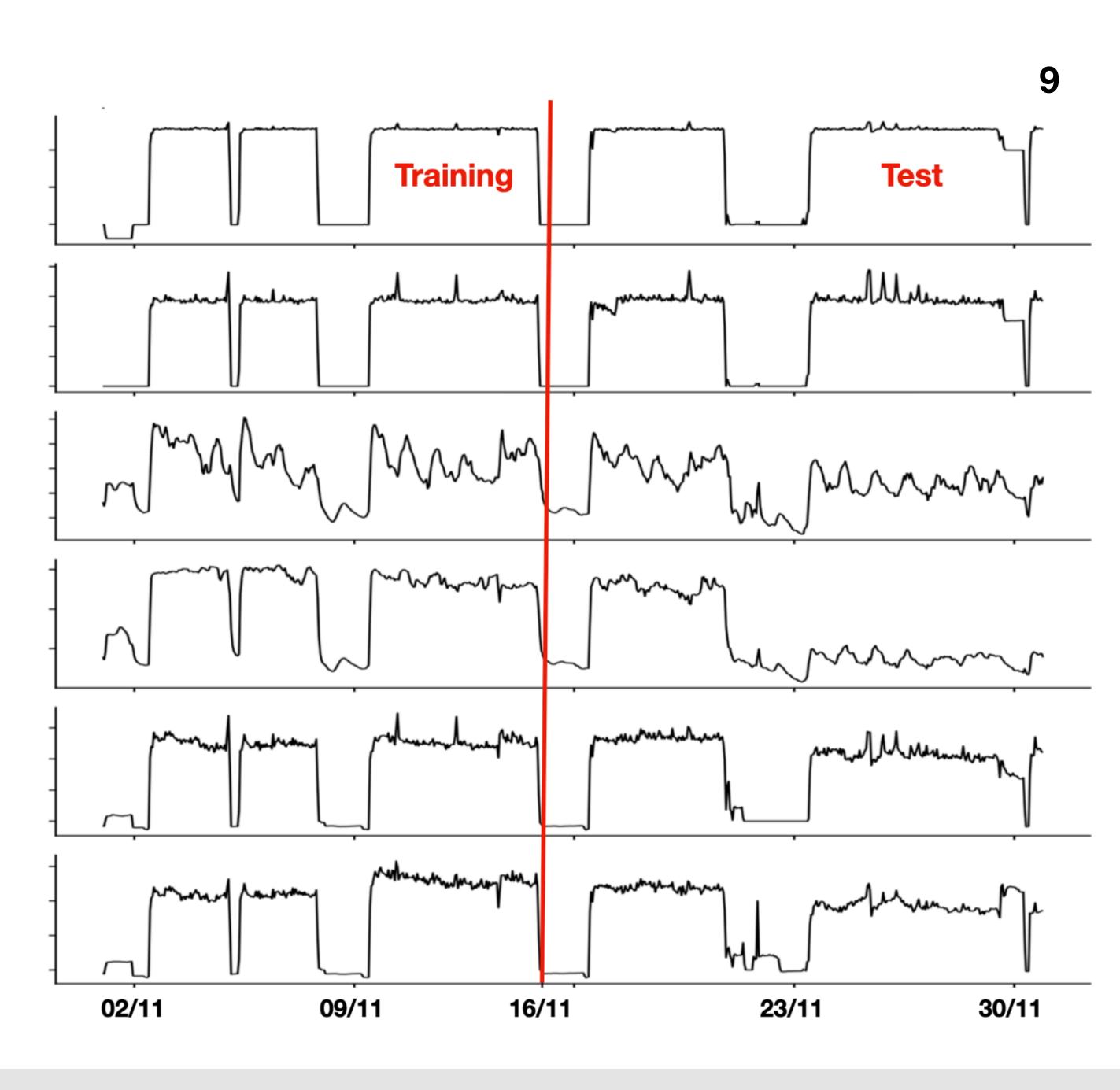
Optimization studies

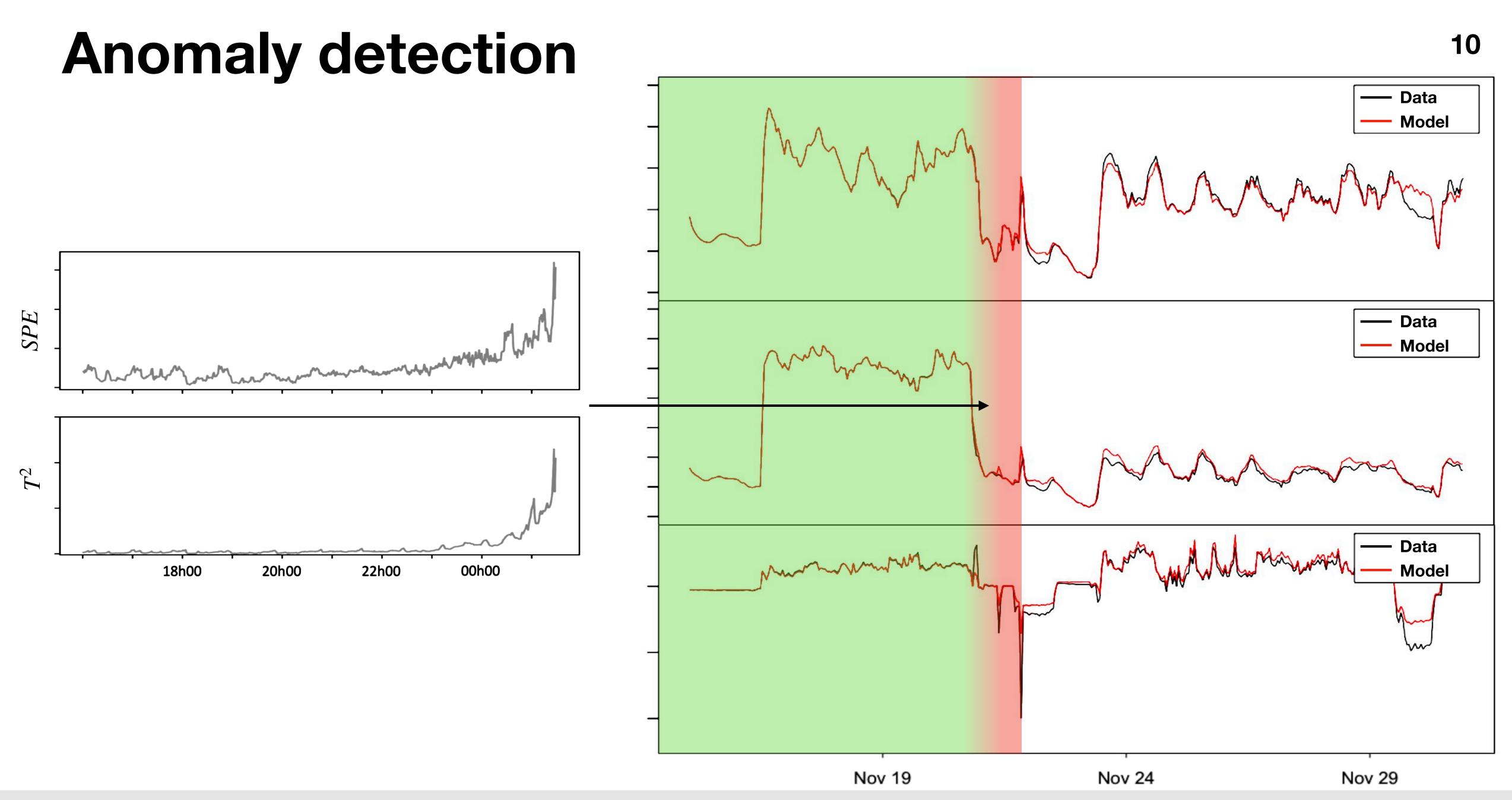


Davide Pagano

Anomaly detection

- Goal: identify previously know malfunctions
- Blind search
- Training: 15 days of data
- Agreement between model and data measured by T^2 and SPE





Davide Pagano

Bayesian estimation of the "health"

Let ω be a set of possible states describing the "health" of the plant and $x = \{T^2, SPE\}$

$$P(\omega_j | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_j) P(\omega_j)}{\int p(\mathbf{x} | \omega_j) P(\omega_j) d\omega_j}$$

• The most simple approach: $\omega = \{\omega_{good}, \omega_{bad}\}$

The likelihoods $p(\mathbf{x} \mid \omega_i)$ can estimated from data or physical models

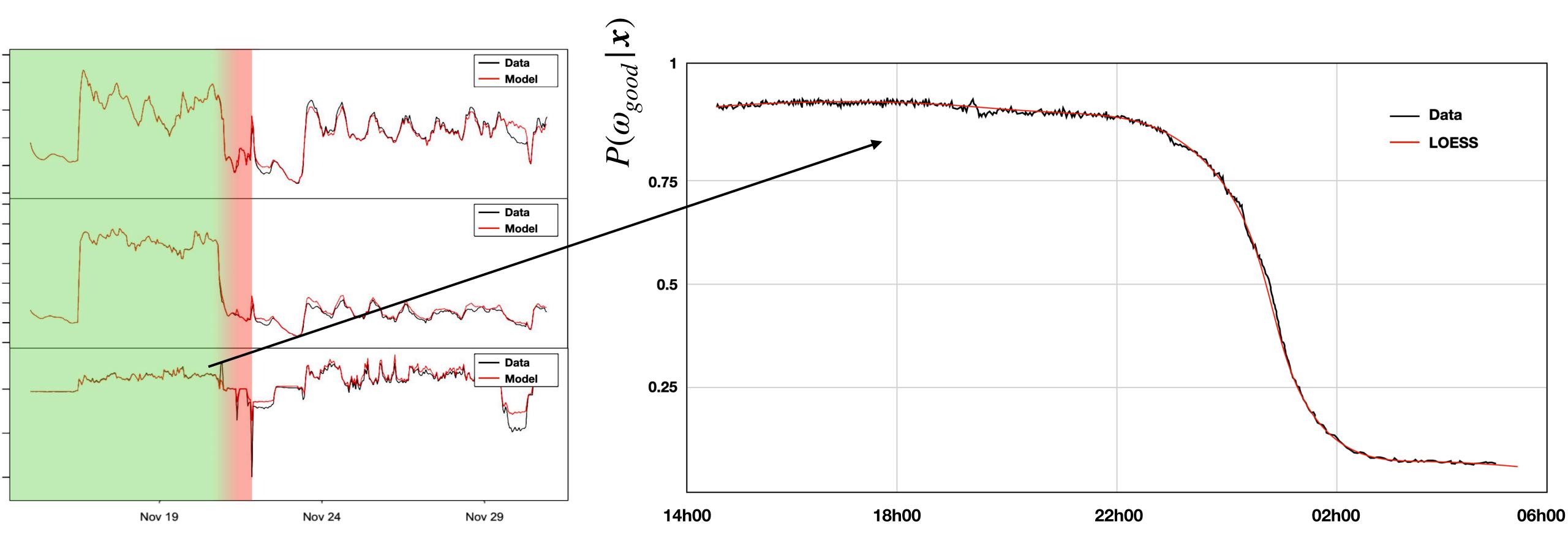
Uniform distributions

Davide Pagano

In our tests $p(x_i | \omega_{good})$ and $p(x_i | \omega_{bad})$ were respectively modeled as a Normal and a

| $p(x_i | \omega_{bad})$ are tricky to model from data (they depend on the problem of the plant)

Bayesian estimation of the "health"



Davide Pagano

From $P(\omega_{good} | \mathbf{x})$ to maintenance

An alarm based on the value of $P(\omega_{good} | \mathbf{x})$ was created

Note: in the long run $P(\omega_{good} | \mathbf{x})$ starts decreasing over time also in absence of failures (seasonality) so the model has to be regularly updated

 \mathbf{X}

🕀 Live

🖵 Mod

📥 Ana

🗱 Impo

🖻 Licer

How does the company do it?

- All code was written in R (LSTM from Keras and TensorFlow)
- An interactive web app was also developed (with <u>R Shiny</u>)

Running on a dedicated server of the company

Davide Pagano

ULTIMO AGGIORNAMENTO	
Selezione variabili	Visualizzazione dati
Intervallo dati	
1 giorno 2 giorni 2 settimane	
1 giorno 2 giorni 3 giorni 1 settimana 2 settimane	
Aggiorna	
Aggiornamento automatico	
Selezione modello	

Conclusions

- LSTM networks successfully used to model industrial data
- from a reference period) and data
- This approach gave very good results in several tests
- A dashboard was also developed to allow:
 - the monitoring of the agreement between data and model
 - the training of new models

• the raising of alarms based on $P(\omega_{good} | \mathbf{x})$

Davide Pagano

 \Box T^2 and SPE metrics used to measure the agreement between model (trained with data)

Bayesian inference to assess the "health" of the plant on the basis of $P(\omega_{good} | x)$

