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sPHENIX is an experiment at RHIC

◎ RHIC at Brookhaven National Laboratory – 
“Relativistic Heavy Ion Collider” – is one of 
only two operating heavy-ion colliders, built 
for the purpose of study if nuclear matter at 
extremely high temperature and/or density

◎ The most important discovery made at RHIC is 
that of the Quark-Gluon Plasma (QGP) – a 
“perfect fluid” of quarks and gluons

◎ sPHENIX aims to answer some of important 
questions about the behavior of QGP
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sPHENIX at RHIC
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Present location of
sPHENIX
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The sPHENIX Detector
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sPHENIX: the EM Calorimeter (EMCAL)
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HCal

HCal

● Tungsten, epoxy & fiber, 2D projective design

● ~20X0, |η| < 1.1, 2𝜋 azimuthal acceptance

● 24576 towers

● ~13%/√E resolution
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sPHENIX readout
◎ sPHENIX is the first large experiment which does not have online event 

building – data streams from its components are combined offline

◎ FEE is interfaced with FELIX boards

◎ The nominal data rate is 135Gbit/s

◎ Data volume: ~70PB of data annually, for the first two years of running
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Test Beam Experiment (conducted at FNAL)
◎ Prototype: 4 blocks, each comprising a 2⨉2 array of towers
◎ Geometry corresponds to the nominal η~1, coverage: Δη⨉Δɸ = 0.2⨉0.2
◎ 60MHz digitizer
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EMCAL: SiPM readout
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● In the test beam experiment, the signal was 
digitized in 32 time bins in the test beam 
experiment, will be reduced to 16 bins in the final 
detector

● Three signal features need to be extracted from 
the discrete ADC data points:

○ Top signal amplitude
○ Time of the signal maximum
○ Pedestal

● This is typically done by fitting the data points 
with a suitable function

● The amplitude (above the pedestal) is the 
measure of the energy

● Timing information is necessary for building 
clusters

peak

pedestal

time
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Feature extraction by fitting the signal
Method: estimate the waveform parameters by applying an appropriate fit.
◎ A variety of analytical and parameterized approximations

◎ Fitting with a “signal template” i.e. the average normalized discrete signal shape, 
with the three varying parameters used in the fit: (scale, time, pedestal)

The second option works well and was chosen as the baseline method. The 
initial benchmark time needed to fit all 24576 channels using this method was 
estimated as 1.4s at nominal detector occupancy.
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An example of the signal template
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Motivation and approach

◎ The main motivation is speed, as the nominal 1.4s per event 
benchmark applies to the very first and basic step in event 
processing, and merits an effort to minimize that number

◎ In modern HEP experiments, use of Machine Learning techniques in 
calorimetry e.g. clustering is increasingly popular (cf. ATLAS, CMS)

◎ The ML application presented here aims to significantly speed up 
the process of signal feature extraction

◎ In the current study, the digitized waveform (ADC counts in each 
time bin) is fed directly into an artificial Neural Network as a vector

◎ Three outputs describing the signal: (scale, time, pedestal)
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Three phases of the ML study
Simulated Signals (“MC Truth”)

● Estimate viability of the approach in 
controlled conditions, with variable 
noise, shape distortion and time jitter

● Gauge the initial performance gain vis 
a vis traditional fitting methods

Test Beam Data
● Train the ML model to reproduce the 

result of the conventional fit, using the 
data collected in the test beam 
experiment, with the actual hardware 
elements of the calorimeter

● Check precision and performance
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Deployment and Integration
● Evaluate different methods of 

integrating the ML inference runtime 
into the sPHENIX software stack

● Consider: Python vs C++
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The platform
◎ Keras/TensorFlow  was chosen due to its user-friendly interface and learning 

curve, power and flexibility

◎ A suite of Python scripts, plus Jupyter notebooks for exploring data

◎ Separate training and validation data samples
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# The (simple) model, dense NN
model = Sequential()
model.add(Dense(32, input_dim=L, activation='relu'))
model.add(Dense(3, activation=’linear’))
model.compile(loss=’mse’, optimizer=’adam’, metrics=['accuracy'])

# Inference requires just one function call
answer = model.predict(X, batch_size=batch)
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Initial results
◎ First results (with simulated signal shapes), performance when large batches: 

3 𝜇s inference time – per input vector – was achieved

◎ This is roughly 50 times faster than the conventional fit – of course this 
needed to be validated with real data

◎ Initial results on the accuracy of inference with respect to “MC truth” were also 
encouraging (at the percent level)

◎ This provided the motivation to apply ML to the existing test beam data
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Moving on to real data (test beam)
◎ Using data collected at FNAL with a test electron beam in the energy range 

of (2..28) GeV. Focus on the residuals wrt to the conventional fit – one 
working example presented below:
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Lessons learned

◎ Normalization of inputs matters. It is helpful to have input values 
normalized to the same scale at least within an order of magnitude 
– e.g. having input tuples (0.0001, 10000.0) will not be optimal. This 
is a standard advice in the ML industry (while perhaps not entirely 
intuitive)

◎ Composition of the training sample matters, with respect to the 
dynamic range. Even when the problem is largely a linear one, the 
learning process appears to be sensitive to the ratios of the peak to 
pedestal and peak to noise. Covering all of the dynamic range has 
been shown to be important.
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Precision/resolution wrt conventional fit
◎ By properly tuning the learning sample, it is possible to replicate the energy 

resolution achieved by the conventional fit
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Deployment and Integration

Option 1: serverize
● 1a: inference server

● 1b: microservices running on worker nodes

● Advantage: complete decoupling from the 
main software stack, flexibility

● Disadvantage: more moving parts

Option 2: use a compatibility layer
● Use a portable inference runtime, 

compatible with Keras or 
Pytorch-derived models

● Create an appropriate interface, 
evaluate ease of use and impact on 
software

18

The challenge
● Like most experiments, sPHENIX relies on a complex ROOT-based framework for 

reconstruction and analysis; in this study (with Keras) we relied on the TensorFlow backend

● Building TensorFlow for the C++ environment requires a specific tool (Bazel) and results in 
fairly large libraries
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1a, 1b: Inference service prototypes created and tested

◎ 1a – NGINX/Django service:
○ problem-agnostic – given an appropriate model, can perform any type 

of inference based on the data received, not just signal fitting
○ Overall simplicity and low volume of the code
○ Performance comparable with the standalone Python applications, with 

network performance having a (negative) impact

◎ 1b – a Gunicorn/WSGI microservice
○ Tested on an actual HTCondor cluster at SDCC (BNL)
○ Overall simplicity and low volume of the code
○ Managing the population of running instances on a farm is an additional 

task, it’s manageable but admittedly adds moving parts

◎ Scalability of either version would need to be addressed
19
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Technology downselect
◎ After consideration, a decision was made to explore a more direct 

way of integrating ML inference into the sPHENIX software stack

◎ ONNX (Open Neural Network Exchange) is a good candidate, and  
has been used in HEP

◎ From the website:
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“ONNX is an open format built to represent machine learning 
models. ONNX defines a common set of operators - the building 
blocks of machine learning and deep learning models - and a 

common file format to enable AI developers to use models with a 
variety of frameworks, tools, runtimes, and compilers.”
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The ONNX Community

21
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How this works

Train
Develop and train 
models using familiar 
tools (e.g. Keras or 
PyTorch)

Convert
Convert the model to 
ONNX format

Run
Use any of the 
available runtime 
libraries/platforms 
compatible with ONNX 
– which are many

The logical choice is to 
use the ONNX runtime 
(NB. Used in ATLAS)
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ONNX runtime binaries and source – availability

23
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Getting and interfacing the ONNX runtime

◎ C++ runtime is available in pre-built form (binaries) for download, 15MB 
total, trivial to build against (just need to define CPLUS_INCLUDE_PATH 
and LD_LIBRARY_PATH)

◎ Can also be built from source locally with minimal effort (tested)
○ Apparently pre-build/downloaded libraries perform better, which needs 

further investigation

◎ Because of the low-level nature of the ONNX framework (cf. 
compatibility) some C++ scaffolding and wrappers need to be created to 
have a functional interface – this adds a modest amount of code
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ONNX C++ interface example: code snippets
// Transform the ROOT input data:
for (int i=0; i<N; i++) {
      Int_t m = branch->GetEntry(i);
      std::vector<int> inp;
      inp.insert(inp.begin(), std::begin(waveform[channel]), std::end(waveform[channel]));
      std::transform(inp.begin(), inp.end()-1, w31.begin(), [](int x)
      {return ((float)x)/1000.0;}); // Conversion to float and scaling
      input.insert(input.end(), w31.begin(), w31.end());
}

// Initialize input and output tensors (note multiple inputs)
inputTensors.push_back (Ort::Value::CreateTensor<float>(oS->_memoryInfo, input.data(),             
N*31,   inputDimsN.data(),  inputDimsN.size()));
outputTensors.push_back(Ort::Value::CreateTensor<float>(oS->_memoryInfo, 
outputTensorValuesN.data(), N*3,    outputDimsN.data(), outputDimsN.size()));
// Run inference
oS->session->Run(Ort::RunOptions{nullptr}, inputNames.data(), inputTensors.data(), 1, 
outputNames.data(), outputTensors.data(), 1);
// NB. Boilerplate contained in the header files
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ONNX runtime: precision and performance

◎ Native Keras, ONNX Python runtime and ONNC C++ runtime all 
produce same numerical results. Precision of the ONNX inference has 
been demonstrated with the test beam data

◎ Similar to the initial Keras experimentation, batching the data for 
inference leads to increase in speed per input vector — inference time 
well under 1 𝜇s was achieved

◎ Reason for that is memory allocation and other fixed costs

◎ …so one possible scenario includes processing data from all the 
channels in the calorimeter in one function call and getting 
processing done on a millisecond scale
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Status and Plans

◎ Integration of the ML-enabled software into the overall calorimeter  
data processing workflow is work in progress, close to completion

◎ In a test with realistic data, and using the sPHENIX software 
framework, the estimated gain in signal processing performance 
when using ML inference is at least 2 orders of magnitude, compared 
with the fastest signal fitting method previously used: estimated at 12 
ms/event for ALL of the 24576 calorimeter channels

◎ An initial study is underway to explore the possibility of applying ML 
to other aspects of the calorimeter data analysis, such as 
discriminating π0 vs γ based on the shower profile
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