
A Machine Learning Method for
calorimeter signal processing in
sPHENIX

M.Potekhin for sPHENIX Collaboration
Brookhaven National Laboratory

ACAT 2022

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

sPHENIX is an experiment at RHIC

◎ RHIC at Brookhaven National Laboratory –
“Relativistic Heavy Ion Collider” – is one of
only two operating heavy-ion colliders, built
for the purpose of study if nuclear matter at
extremely high temperature and/or density

◎ The most important discovery made at RHIC is
that of the Quark-Gluon Plasma (QGP) – a
“perfect fluid” of quarks and gluons

◎ sPHENIX aims to answer some of important
questions about the behavior of QGP

2

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

sPHENIX at RHIC

3

Present location of
sPHENIX

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

The sPHENIX Detector

4

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

sPHENIX: the EM Calorimeter (EMCAL)

5

HCal

HCal

● Tungsten, epoxy & fiber, 2D projective design

● ~20X0, |η| < 1.1, 2𝜋 azimuthal acceptance

● 24576 towers

● ~13%/√E resolution

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

sPHENIX readout
◎ sPHENIX is the first large experiment which does not have online event

building – data streams from its components are combined offline

◎ FEE is interfaced with FELIX boards

◎ The nominal data rate is 135Gbit/s

◎ Data volume: ~70PB of data annually, for the first two years of running

6

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Test Beam Experiment (conducted at FNAL)
◎ Prototype: 4 blocks, each comprising a 2⨉2 array of towers
◎ Geometry corresponds to the nominal η~1, coverage: Δη⨉Δɸ = 0.2⨉0.2
◎ 60MHz digitizer

7

Bea
m

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

EMCAL: SiPM readout

8

● In the test beam experiment, the signal was
digitized in 32 time bins in the test beam
experiment, will be reduced to 16 bins in the final
detector

● Three signal features need to be extracted from
the discrete ADC data points:

○ Top signal amplitude
○ Time of the signal maximum
○ Pedestal

● This is typically done by fitting the data points
with a suitable function

● The amplitude (above the pedestal) is the
measure of the energy

● Timing information is necessary for building
clusters

peak

pedestal

time

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Feature extraction by fitting the signal
Method: estimate the waveform parameters by applying an appropriate fit.
◎ A variety of analytical and parameterized approximations

◎ Fitting with a “signal template” i.e. the average normalized discrete signal shape,
with the three varying parameters used in the fit: (scale, time, pedestal)

The second option works well and was chosen as the baseline method. The
initial benchmark time needed to fit all 24576 channels using this method was
estimated as 1.4s at nominal detector occupancy.

9

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

An example of the signal template

10

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Motivation and approach

◎ The main motivation is speed, as the nominal 1.4s per event
benchmark applies to the very first and basic step in event
processing, and merits an effort to minimize that number

◎ In modern HEP experiments, use of Machine Learning techniques in
calorimetry e.g. clustering is increasingly popular (cf. ATLAS, CMS)

◎ The ML application presented here aims to significantly speed up
the process of signal feature extraction

◎ In the current study, the digitized waveform (ADC counts in each
time bin) is fed directly into an artificial Neural Network as a vector

◎ Three outputs describing the signal: (scale, time, pedestal)

11

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Three phases of the ML study
Simulated Signals (“MC Truth”)

● Estimate viability of the approach in
controlled conditions, with variable
noise, shape distortion and time jitter

● Gauge the initial performance gain vis
a vis traditional fitting methods

Test Beam Data
● Train the ML model to reproduce the

result of the conventional fit, using the
data collected in the test beam
experiment, with the actual hardware
elements of the calorimeter

● Check precision and performance

12

Deployment and Integration
● Evaluate different methods of

integrating the ML inference runtime
into the sPHENIX software stack

● Consider: Python vs C++

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

The platform
◎ Keras/TensorFlow was chosen due to its user-friendly interface and learning

curve, power and flexibility

◎ A suite of Python scripts, plus Jupyter notebooks for exploring data

◎ Separate training and validation data samples

13
3)

The (simple) model, dense NN
model = Sequential()
model.add(Dense(32, input_dim=L, activation='relu'))
model.add(Dense(3, activation=’linear’))
model.compile(loss=’mse’, optimizer=’adam’, metrics=['accuracy'])

Inference requires just one function call
answer = model.predict(X, batch_size=batch)

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Initial results
◎ First results (with simulated signal shapes), performance when large batches:

3 𝜇s inference time – per input vector – was achieved

◎ This is roughly 50 times faster than the conventional fit – of course this
needed to be validated with real data

◎ Initial results on the accuracy of inference with respect to “MC truth” were also
encouraging (at the percent level)

◎ This provided the motivation to apply ML to the existing test beam data

14

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Moving on to real data (test beam)
◎ Using data collected at FNAL with a test electron beam in the energy range

of (2..28) GeV. Focus on the residuals wrt to the conventional fit – one
working example presented below:

15

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Lessons learned

◎ Normalization of inputs matters. It is helpful to have input values
normalized to the same scale at least within an order of magnitude
– e.g. having input tuples (0.0001, 10000.0) will not be optimal. This
is a standard advice in the ML industry (while perhaps not entirely
intuitive)

◎ Composition of the training sample matters, with respect to the
dynamic range. Even when the problem is largely a linear one, the
learning process appears to be sensitive to the ratios of the peak to
pedestal and peak to noise. Covering all of the dynamic range has
been shown to be important.

16

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Precision/resolution wrt conventional fit
◎ By properly tuning the learning sample, it is possible to replicate the energy

resolution achieved by the conventional fit

17

Fit

ML

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Deployment and Integration

Option 1: serverize
● 1a: inference server

● 1b: microservices running on worker nodes

● Advantage: complete decoupling from the
main software stack, flexibility

● Disadvantage: more moving parts

Option 2: use a compatibility layer
● Use a portable inference runtime,

compatible with Keras or
Pytorch-derived models

● Create an appropriate interface,
evaluate ease of use and impact on
software

18

The challenge
● Like most experiments, sPHENIX relies on a complex ROOT-based framework for

reconstruction and analysis; in this study (with Keras) we relied on the TensorFlow backend

● Building TensorFlow for the C++ environment requires a specific tool (Bazel) and results in
fairly large libraries

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

1a, 1b: Inference service prototypes created and tested

◎ 1a – NGINX/Django service:
○ problem-agnostic – given an appropriate model, can perform any type

of inference based on the data received, not just signal fitting
○ Overall simplicity and low volume of the code
○ Performance comparable with the standalone Python applications, with

network performance having a (negative) impact

◎ 1b – a Gunicorn/WSGI microservice
○ Tested on an actual HTCondor cluster at SDCC (BNL)
○ Overall simplicity and low volume of the code
○ Managing the population of running instances on a farm is an additional

task, it’s manageable but admittedly adds moving parts

◎ Scalability of either version would need to be addressed
19

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Technology downselect
◎ After consideration, a decision was made to explore a more direct

way of integrating ML inference into the sPHENIX software stack

◎ ONNX (Open Neural Network Exchange) is a good candidate, and
has been used in HEP

◎ From the website:

20

“ONNX is an open format built to represent machine learning
models. ONNX defines a common set of operators - the building
blocks of machine learning and deep learning models - and a

common file format to enable AI developers to use models with a
variety of frameworks, tools, runtimes, and compilers.”

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

The ONNX Community

21

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

How this works

Train
Develop and train
models using familiar
tools (e.g. Keras or
PyTorch)

Convert
Convert the model to
ONNX format

Run
Use any of the
available runtime
libraries/platforms
compatible with ONNX
– which are many

The logical choice is to
use the ONNX runtime
(NB. Used in ATLAS)

22

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

ONNX runtime binaries and source – availability

23

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Getting and interfacing the ONNX runtime

◎ C++ runtime is available in pre-built form (binaries) for download, 15MB
total, trivial to build against (just need to define CPLUS_INCLUDE_PATH
and LD_LIBRARY_PATH)

◎ Can also be built from source locally with minimal effort (tested)
○ Apparently pre-build/downloaded libraries perform better, which needs

further investigation

◎ Because of the low-level nature of the ONNX framework (cf.
compatibility) some C++ scaffolding and wrappers need to be created to
have a functional interface – this adds a modest amount of code

24

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

ONNX C++ interface example: code snippets
// Transform the ROOT input data:
for (int i=0; i<N; i++) {
 Int_t m = branch->GetEntry(i);
 std::vector<int> inp;
 inp.insert(inp.begin(), std::begin(waveform[channel]), std::end(waveform[channel]));
 std::transform(inp.begin(), inp.end()-1, w31.begin(), [](int x)
 {return ((float)x)/1000.0;}); // Conversion to float and scaling
 input.insert(input.end(), w31.begin(), w31.end());
}

// Initialize input and output tensors (note multiple inputs)
inputTensors.push_back (Ort::Value::CreateTensor<float>(oS->_memoryInfo, input.data(),
N*31, inputDimsN.data(), inputDimsN.size()));
outputTensors.push_back(Ort::Value::CreateTensor<float>(oS->_memoryInfo,
outputTensorValuesN.data(), N*3, outputDimsN.data(), outputDimsN.size()));
// Run inference
oS->session->Run(Ort::RunOptions{nullptr}, inputNames.data(), inputTensors.data(), 1,
outputNames.data(), outputTensors.data(), 1);
// NB. Boilerplate contained in the header files

25

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

ONNX runtime: precision and performance

◎ Native Keras, ONNX Python runtime and ONNC C++ runtime all
produce same numerical results. Precision of the ONNX inference has
been demonstrated with the test beam data

◎ Similar to the initial Keras experimentation, batching the data for
inference leads to increase in speed per input vector — inference time
well under 1 𝜇s was achieved

◎ Reason for that is memory allocation and other fixed costs

◎ …so one possible scenario includes processing data from all the
channels in the calorimeter in one function call and getting
processing done on a millisecond scale

26

M.Potekhin ⃤ sPHENIX ML ⃤ ACAT 2022

Status and Plans

◎ Integration of the ML-enabled software into the overall calorimeter
data processing workflow is work in progress, close to completion

◎ In a test with realistic data, and using the sPHENIX software
framework, the estimated gain in signal processing performance
when using ML inference is at least 2 orders of magnitude, compared
with the fastest signal fitting method previously used: estimated at 12
ms/event for ALL of the 24576 calorimeter channels

◎ An initial study is underway to explore the possibility of applying ML
to other aspects of the calorimeter data analysis, such as
discriminating π0 vs γ based on the shower profile

27

