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Motivation

▷ Significant impact on performance

▷ Manual hyperparameter optimization

▷ Automation

▷ HH → multilepton

▷ Choice of best strategy unclear

▷ Parallelization @ HPC
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Particle swarm optimization

▷ Swarm of particles

▷ Location = one solution

▷ Each value on an axis
corresponds to one
hyperparameter

▷ 3 steps of evolution:

a Espionage

b Position update
c Speed update

xgb = argmax {[xspb ∈R S](Ninfo)}
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i



Motivation Optimization algoritms Benchmark tasks Results Summary

Particle swarm optimization

▷ Swarm of particles

▷ Location = one solution

▷ Each value on an axis
corresponds to one
hyperparameter

▷ 3 steps of evolution:

a Espionage
b Position update
c Speed update

pk+1
i = xk+1

i − xki
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Bayesian optimization

▷ Optimization done on
surrogate function

▷ Fast to evaluate
▷ Derivatives and analytic
form known

▷ 3 steps of evolution:

▷ Find points to evaluate
(q-EI)

▷ Evaluate points
▷ Update surrogate function

▷ Reported to work best with
<1k evaluations
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Rosenbrock function

R(x , y) = (a− x)2 + b(y − x2)2

▷ Well known trial function

▷ (x , y)min = (a, a2)

▷ Objective function
Rosenbrock function itself.
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ATLAS Higgs boson machine learning challenge (HBC) (i)

▷ Kaggle competition

▷ Run-1 simplified ATLAS
H → ττ analysis

▷ Signal: H → ττ

▷ Backgrounds:

▷ Z → τhτh
▷ tt̄ → τh + µ/e
▷ W-boson decay

▷ More representative task of
ML in HEP analysis
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ATLAS Higgs boson machine learning challenge (HBC) (iii)

Table: The seven chosen XGBoost hyperparameters to be optimized

min max

num-boost-round 1 500
learning-rate 10−5 1.0
max-depth 1 6
gamma 0.0 5.0

min-child-weight 0.0 500.0
subsample 0.8 1.0

colsample-bytree 0.3 1.0
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ATLAS Higgs boson machine learning challenge (HBC) (ii)

AMS =

√
2 · (s + b + br ) · ln[1 +

s

b + br
]− s
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ATLAS Higgs boson machine learning challenge (HBC) (ii)

AMS =

√
2 · (s + b + br ) · ln[1 +

s

b + br
]− s

↓

dAMS = AMStest − κ ·max(0, [AMStest − AMStrain])
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Performance

Rosenbrock function HBC
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Parallelization (Amdahl’s law)

Slatency (s) =
1

(1− p) + p
s
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Parallelization (PSO)
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Performance summary

PSO BO

Faster convergance later earlier
Parallelization capabilities ✓✓ ✓

Suitable for low resources ✓ ✓✓

Computational overhead ✓ ?
Optimal N relative

parallel ∼ 2% <

HH → multilepton: ∼10% improvement
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Time

Bayesian optimization + HBC 3000 CPUh
(Niter = 30 & Nparallel = 100)

Rosenbrock 0.06 CPUs

Particle swarm optimization 0.01 CPUs

HBC O(30 CPUmin)

Intel Xeon E5 processor
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