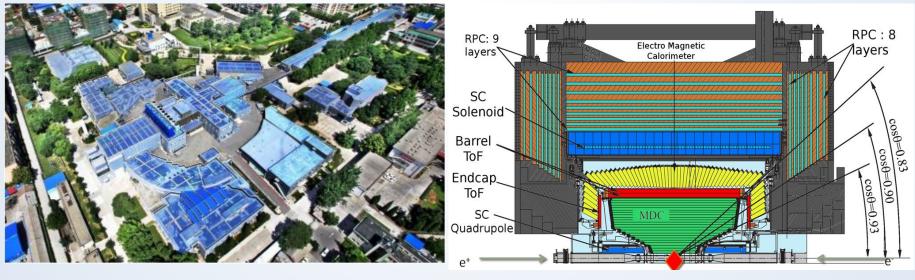


Simultaneous Track Finding and Track Fitting by the Deep Neural Network at BESIII

Yao ZHANG¹, Ye YUAN^{1,2}, Haiyong JIANG², Zhibin YANG¹, Wenniu ZHANG², Xiaorui LYU², Yangheng ZHENG², Jun XIAO²

1. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 2. University of Chinese Academy of Sciences 25 October 2022

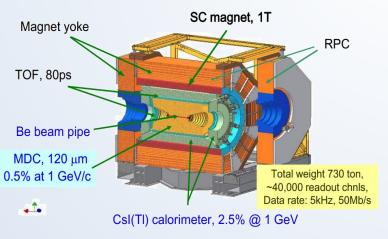
ACAT 2022



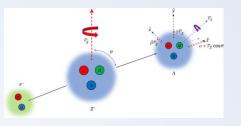
University of Chinese Academy of Sciences

BEPCII and BESIII

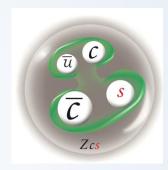
- BEPCII is a double-ring e⁺e⁻ collider running in the E_{cm}=2-5GeV in China
 Highest luminosity : 10³³cm⁻²s⁻¹
- BESIII at the BEPCII is for the studies at hadron physics and τ-charm physics with the highest accuracy achieved until now
- World's largest J/ψ dataset : 10 billion

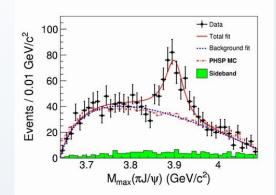


The Beijing Electron Positron Collider (BEPCII)


The **BESIII** detector

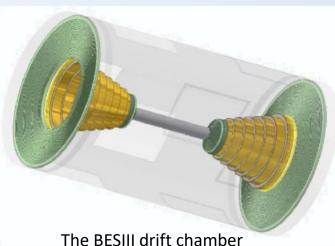
Detector and physics of BESIII

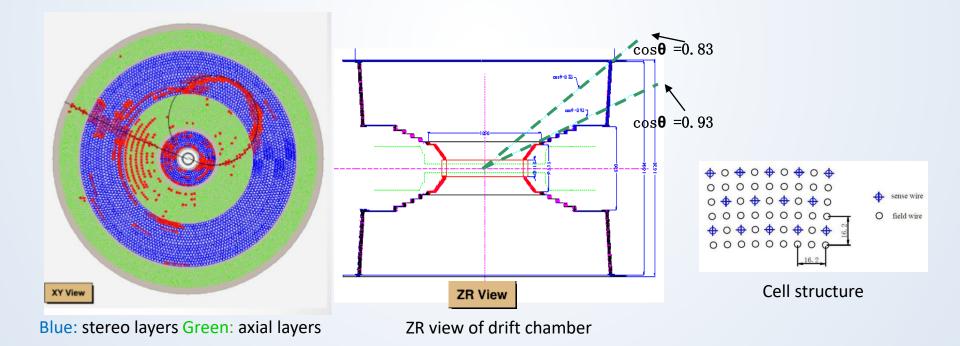

- Charged track reconstruction
 - A multi-layer drift chamber(MDC) for track momentum, position and secondary vertex
- Particle identification
 - A time-of-flight system (TOF)
 - An electromagnetic calorimeter (EMC)
- Muon-pion separation
 - Muon counter (MUC)


BESIII Detector

Probing CP symmetry with Entangled Double-strange baryons @ nature

Observation of the Zcs(3985) strange four-quark meson

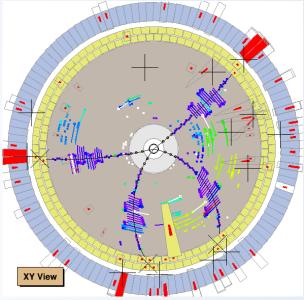


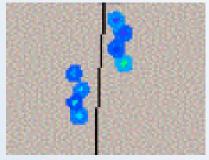

Observation of a charged charmonium like structure at BESIII Zc(3900) is on the top of the "Highlights of the Year"

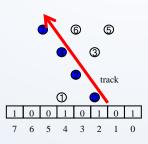
10-25-2022

The BESIII Drift Chamber

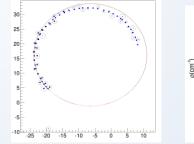
- Gaseous cylindrical drift chamber with $|\cos\theta| < 0.93$
- 6796 wires arranged in 43 layers
- 3 or 4 layers are grouped to super-layers
- Axial and stereo super-layers alternatively

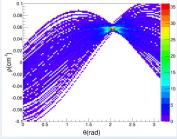



Traditional tracking of BESIII drift chamber

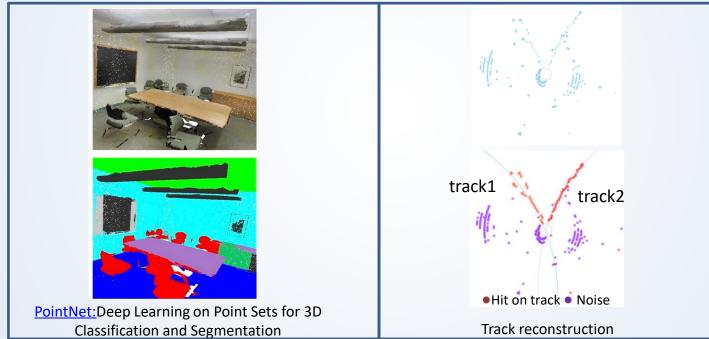

- Local method
 - Template matching for segment in super-layers
 Sensitive to wire inefficient, layer arrangement and momentum
 - Seeding and road following
 Affect by noise or background alone the track path
- Global method
 - Hough transform

Affect by energy loss and overlapping track




An event display

Track segment finding in super-layers


Hough transform

Motivation

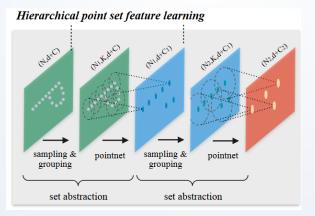
- Increase the tracking efficiency and performance for special events
 - Low transverse momentum
 - Large dip angle
 - Secondary vertex
- Higher Background and noise with the upgrade of BEPCII
 - Noise hit resistance (another efforts please refer to <u>Rostam's poster</u>)
- The optimization of the tradition tracking algorithm could be risky and challenge
- Aim of our work
 - Explore the new tracking method with novel technics
 - Hit clustering with the auxiliary of the track parameter regression
 - Parallel "track finding and fitting" with neural network
 - Experiment independent tracking with 2-D measurement (drift chamber)

Neural network approach for track reconstruction

- Idea:
 - 1. Semantic segmentation of the point set -> track finding/hit clustering
 - 2. Extract local features -> track fitting/track parameter estimation

Address track parameter estimation and hit clustering simultaneously in an end-to-end fashion

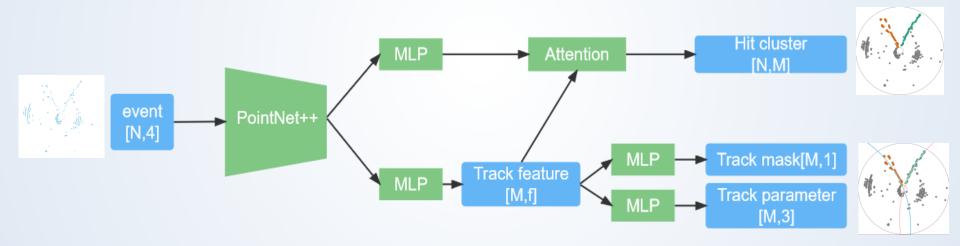
PointNet++:


Point set segmentation for semantic scene labeling and feature extraction

Given an unordered point set $\{x_1, x_2, ..., x_n\}$ with $x_i \in \mathbb{R}^d$, one can define a set function $f : \mathcal{X} \to \mathbb{R}$ that maps a set of points to a vector:

$$f(x_1, x_2, ..., x_n) = \gamma \left(\max_{i=1,...,n} \{ h(x_i) \} \right)$$
(1)

where γ and h are usually multi-layer perceptron (MLP) networks.


- The response of h can be interpreted as the spatial encoding of a point
- The set function *f* in Eq. 1 is invariant to input point permutations and can arbitrarily approximate any continuous set function

Track parameter estimated by learning the local feature of hit cluster

PointNet++ based tracking network

- End-to-end hit clustering with track parameter estimation
 - 1. Hit clustering for each hit
 - 2. track parameters for each predicted group of hits

PointNet++ based tracking network

Loss function

- Clustering loss
 - Cross entropy loss for hits clustering

$$\ell(x,y) = L = \{l_1,\ldots,l_N\}^ op, \quad l_n = -w_{y_n}\lograc{\exp(x_{n,y_n})}{\sum_{c=1}^C\exp(x_{n,c})}\cdot 1\{y_n
eq ext{ignore_index}\}$$

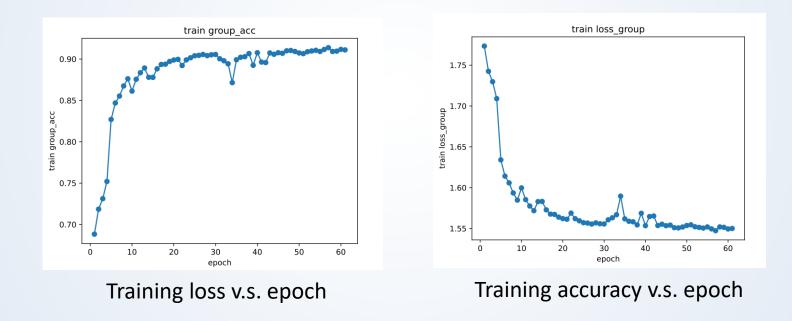
where x is the input, y is the target, w is the weight, C is the number of classes, and N spans the minibatch

Binary loss of the classification for default clusters

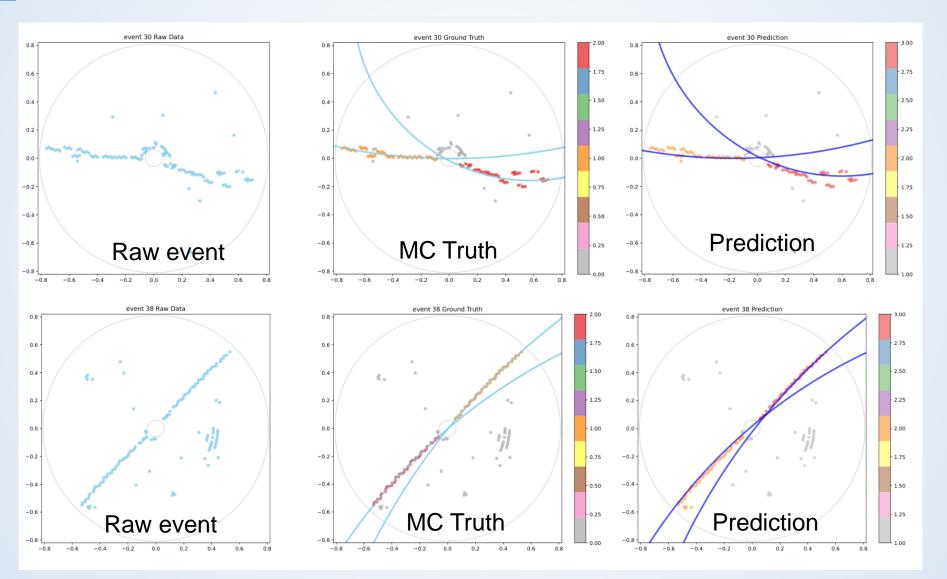
$$\ell(x,y) = L = \{l_1, \dots, l_N\}^{ op}, \quad l_n = -w_n \left[y_n \cdot \log x_n + (1-y_n) \cdot \log(1-x_n)\right],$$

where N is the batch size. If reduction is not 'none' (default 'mean'), then

- Track parameters loss
 - Frobenius Norm Loss

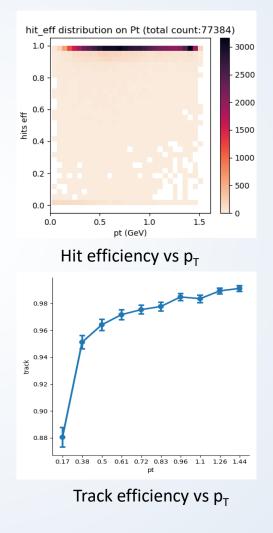

$$L_{Frob} = \|A_{pred} - A_{gnd}\|_F = \sqrt{\sum_{i}^{m} \sum_{j}^{n} |a_{ij}^{pred} - a_{ij}^{gnd}|^2}$$

Training

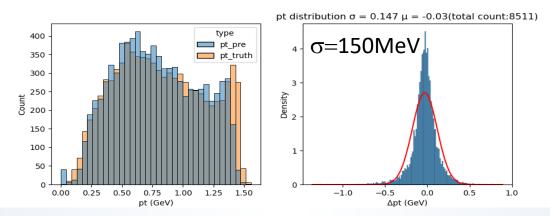

- Dataset
 - J/ ψ -> $\rho\pi$ with one or two tracks as final state
 - Training/validation/test: 120k/15k/15k events
- Pre-processing
 - 1. Initial layer < 8
 - 2. Number of gap layers < 5
 - 3. Total number of hits >= 10
 - 4. Total number of layers >= 8
- GPU environment
 - Tesla V100

Training loss and accuracy

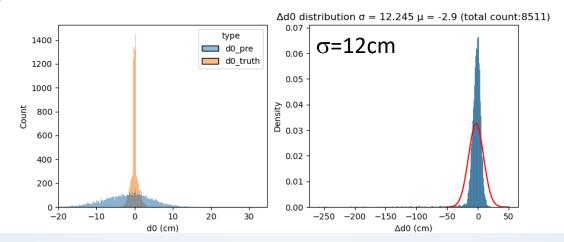
Converged after ~30 epoch


Prediction of the events

Hit clustering and track parameter performance


$$hit \ efficiency = \frac{N_{hit \ predicted \ correctly}}{N_{truth \ hit \ on \ track}}$$
$$hit \ purity = \frac{N_{hit \ predicted \ correctly}}{N_{predicted \ hit \ on \ track}}$$
$$track \ efficiency = \frac{N_{predicted \ track}}{N_{truth \ track}}$$

- J/ ψ -> $\rho\pi$
 - Hit efficiency: 93.2%
 - Hit purity: 91.9%
 - Track efficiency for high p_T tracks > 96%



Performance of track parameter

• p_T distribution

d₀ distribution

The performance of track parameter estimation is promising

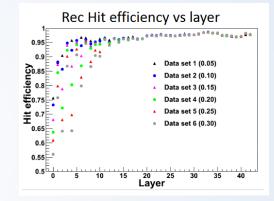
Further approach

- Optimize current model considering physical mechanic
 - Use dice-loss to evaluate the hit efficiency
 - Distance between track and hits
 - Axial and stereo layers separately
 - Put kinematics and track model
 - Add an refinement of the track
- More efforts
 - DeepFit: 3D Surface Fitting via Neural Network Weighted Least Squares
 - Attention mechanism with transformers

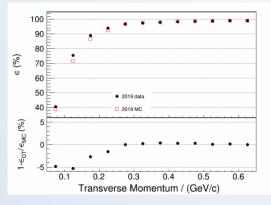
DeepFit

- We propose a novel neural network approach for drift chamber tracking
 - An end-to-end multi-track tracking
 - Hit clustering and track estimation simultaneously
- Preliminary performance of this work is promising
- More approach is under investigate such as
 - The combination of least-square fit
 - Attention mechanism with transformers

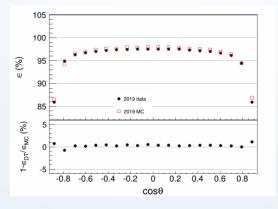
Thank you for your attention!

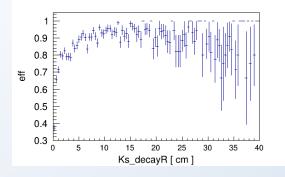


.


Backup

Challenge for BESIII tracking


- Tracking quality need to improve for following situation
 - Noise resistance
 - Low momentum
 - Large dip angle
 - Secondary vertex



Hit efficiency vs noise level

Pion tracking efficiency vs p_T 10-25-2022

Pion tracking efficiency vs cosθ ACAT2022 Ks tracking efficiency decay length