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1 Introduction 

Track reconstruction of the Multi-layer Drift Chamber (MDC) [1] of the BESIII 

detector [2] at the Beijing Electron Positron Collider II (BEPCII) [3] is one of the most 

important tasks of the offline data analysis. The structure of the BESIII is shown in 

Figure 1, and the MDC is illustrated in Figure 2. The MDC aims to provide spatial, 

momentum and dE/dx measurements for the charged particles. It is essential to 

reconstruct charged particle tracks accurately with high efficiency across a range of 

particle momenta and dip angles. Although traditional tracking algorithms have been 

successfully employed in the reconstruction of BESIII, optimization of track 

reconstruction can be done for the low momentum, large dip angle sample and the noisy 

events. 

One of the most powerful advantages of deep learning techniques is the ability to 

find patterns from data. For particle track reconstruction, the process of partitioning 

space points into disjoint groups is a challenging pattern recognition task. A variety of 

deep learning approaches have shown promise in the problem of particle track 

reconstruction at high energy physics experiments. The method presented here explored 

new perspectives for track reconstruction on drift chamber detector data using deep 

learning techniques. 

2 Methodology 

The deep learning approaches to particle track reconstruction have mainly focused 

on silicon detectors. A point-based neural network was explored for hits clustering and 

track fitting in the context of 2-dimensional data from the drift chamber detector in the 

BESIII. Hit signals from the MDC can be thought of as point clouds, each point has 

unique 2-D position coordinates representing a sense wire and its inherent features as 

input for the point-based neural network. Track reconstruction typically proceeds in two 

tasks: track finding and track fitting. 

Track fitting and track hit classification is highly relevant, hence these two 

approaches could benefit each other. For example, if we know the underlying 



 

Figure 1. The structure of BESIII.               Figure 2. Main Drift Chmber. 

 

parameters of a track, then track hits associated with the track can be easily identified. 

On the other hand, if we know the hits of a track, then we can get underlying parameters 

by fitting them. Most existing works take the second scheme by classifying track hits and 

then estimating track parameters. Inspired by the above observations and the success of 

multi-task training, we propose a unified framework to address track fitting and track hit 

classification simultaneously in an end-to-end fashion. The method takes hits from 

multiple tracks as inputs, where each hit holds 3-dimensional features, including position 

and drift time. We feed these inputs to a backbone network to extract hit level features. 

Then the network is divided into two branches. One branch is a reconstruction branch, 

which estimates the parameters of each track and its existence. The other branch is a track 

segmentation branch, which takes learned features of PointNet++[4, 5] and track features 

to determine a hit-wise track assignment. In essence, we can assign each track hit to its 

potential track to classify track hits. 

Our full network architecture is visualized in Figure 3. The network has three key 

modules: the PointNet++ as trunk network to extraction features from all the points, 

following by two branch networks for hits clustering and track fitting, and an attention 

implementation from track features to hits clustering. Training has been done with Monte-

Carlo simulation data of multi-track sample. 

 

Figure 3. Model architecture. 

3 Results 

Tracking performance has been assessed across hit efficiency, hit purity, track 

efficiency, momentum resolution and spatial resolution. Comparison between current 

tracking algorithm performance and other on-going tracking studies has been done. 

 



3.1 Hits clustering 

Performance of hits clustering is shown as hit efficiency for track, hit purity for 

track and track efficiency versus transverse momentum with respect to all truth hits. 

For each track, the ratio of correctly identified signal hits to the total number of truth 

signal hits is defined as the hit efficiency. And for each track, the ratio of correctly 

identified signal hits to the total number of hits identified as signal is defined as the hit 

purity. 

𝜀𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 ℎ𝑖𝑡 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 ℎ𝑖𝑡𝑠

𝑁𝑡𝑟𝑢𝑡ℎ 𝑠𝑖𝑔𝑛𝑎𝑙 ℎ𝑖𝑡𝑠 𝑜𝑛 𝑜𝑛𝑒 𝑡𝑟𝑎𝑐𝑘
 (1) 

𝜀𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔 ℎ𝑖𝑡 𝑝𝑢𝑟𝑖𝑡𝑦 =
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 ℎ𝑖𝑡𝑠

𝑁ℎ𝑖𝑡𝑠 𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑 𝑎𝑠 𝑠𝑖𝑔𝑛𝑎𝑙 𝑜𝑛 𝑜𝑛𝑒 𝑡𝑟𝑎𝑐𝑘
 (2) 

The Figure 4 displays the number of clustering hit efficiency of tracks as a function 

of transverse momentum, representing the number of tracks with respect to each hit 

efficiency and transverse momentum bin. The majority of events in Figure 4 exhibit a 

total clustering hit efficiency as approximately 100% across all transverse momentum 

regions. The average total hit efficiency is calculated to be 96.4%. The clustering hit 

purity as a function of transverse momentum is illustrated in Figure 5. The total average 

clustering hit purity is 94.7%. Figure 6 shows the track efficiency as a function of 

transverse momentum, showing consistently high efficiency within a relatively low 

transverse momentum range. 

 

Figure 4 Clustering hit efficiency as a function of transverse momentum. 

 



 
Figure 5. Clustering hit purity of tracks as a function of transverse momentum 

 

Figure 6. Track efficiency as a function of transverse momentum 

  

3.2 Track parameter estimation 

The evaluation of tracking performance involves the consideration of both 

momentum resolution and spatial resolution as key metrics. Figure 7 presents a 

comparison between predicted and true transverse momentum, revealing a 

transverse momentum resolution of approximately 147 MeV/c. The prediction of 

impact parameter is depicted in Figure 8. In this study, the 2-D circle track model 

is employed to describe the tracks. While the center and radius of the circle of the 

first hit on the track are utilized as references during training, the distance between 

the predicted track and the wire is not enforced as a constraint. Consequently, the 

spatial resolution is approximately 14.5 cm, which is inferior to that achieved by 

traditional methods. The impact parameter resolution of the traditional method is 

less than 1mm for transverse momenta exceeding 100 MeV/c. This indicates that 

the drift time measurements are crucial for the estimation of the hit position and 

track and should be considered in the future training. 



 

Figure 7. Distribution of pT prediction and pT truth(left) and ∆pT distribution(right). 

 

Figure 8. Distribution of d0 prediction and d0 truth(left) and ∆d0 distribution(right). 

 

4 Conclusion 

A point-based machine learning method designed for track reconstruction of drift 

chamber detector was studied. This method allows us to predict the track parameters of 

a track candidate while conducting hit classification. Preliminary results indicate our 

framework is able to group hits from different tracks and give the candidate track 

parameters simultaneously. The estimation of the track parameter should be optimized 

by introducing the distance between track and hits in training 
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