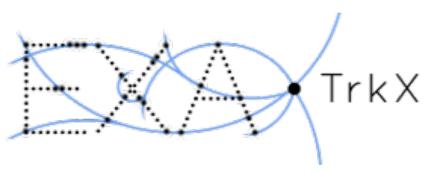
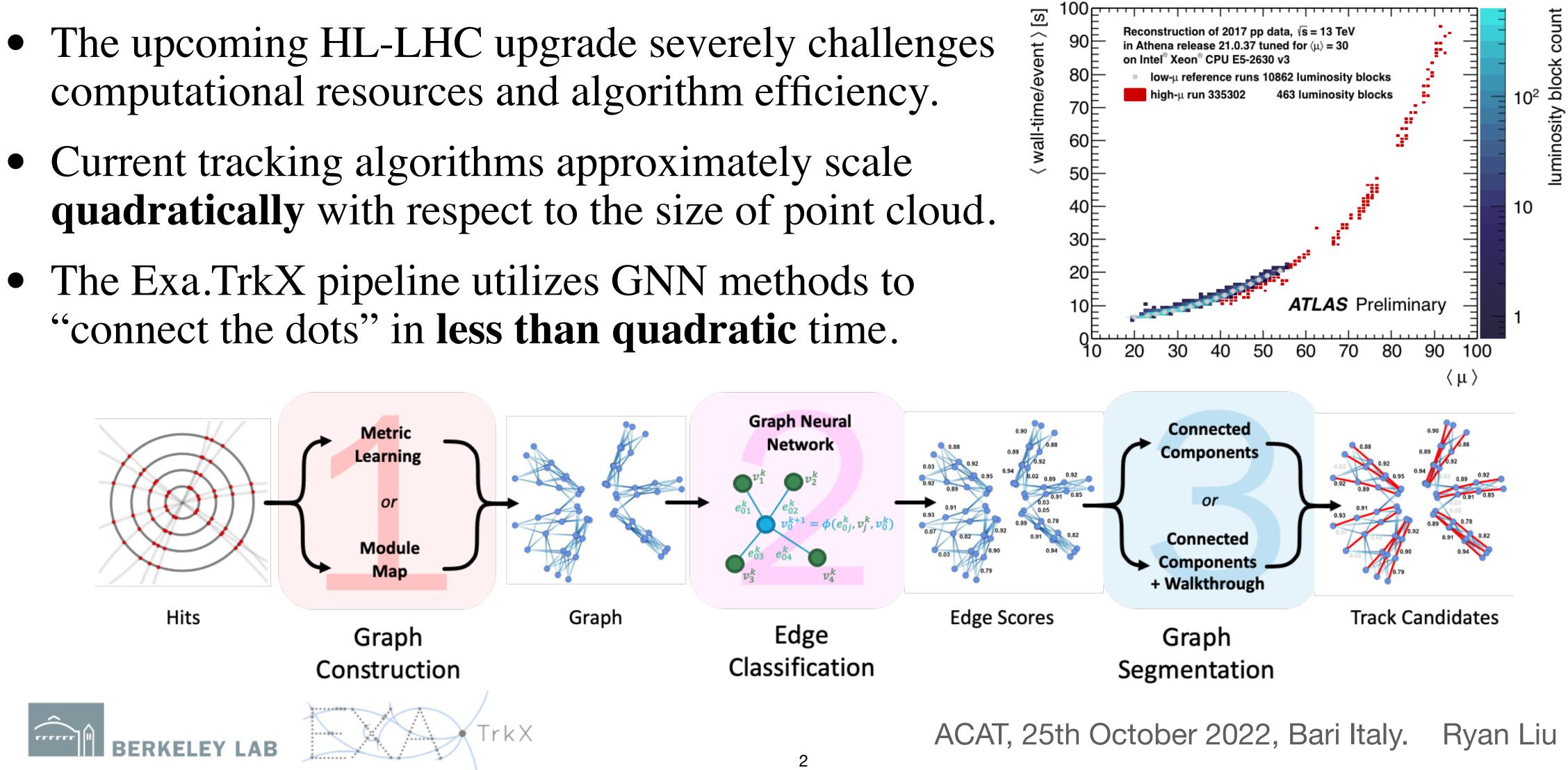
Hierarchical Graph Neural Networks for Particle Track Reconstruction

Ryan Liu Lawrence Berkeley National Laboratory, University of California, Berkeley Contact: <u>liuryan30@berkeley.edu</u>



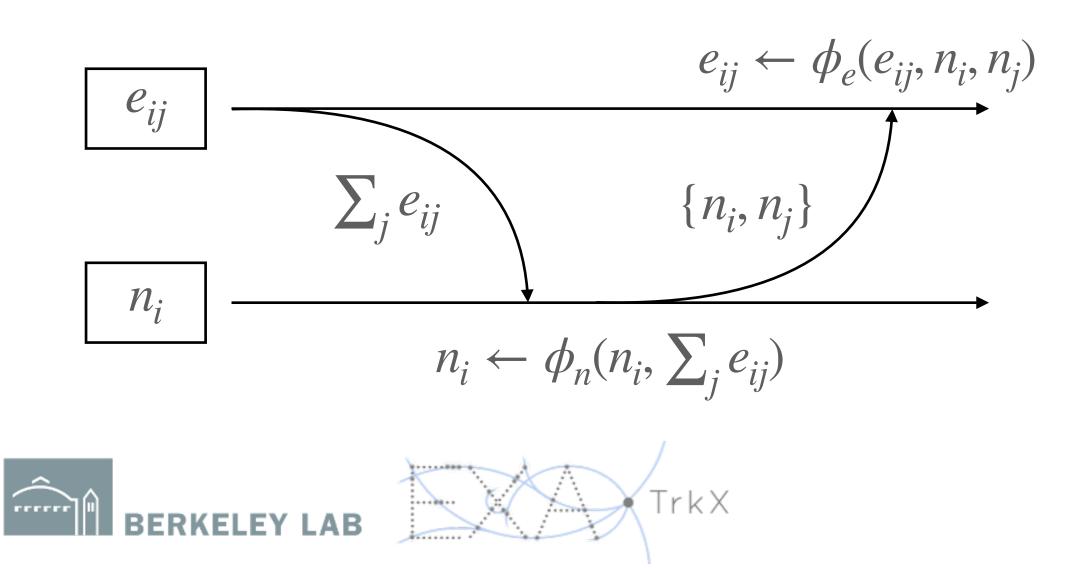
The Exa.TrkX Track Reconstruction Pipeline

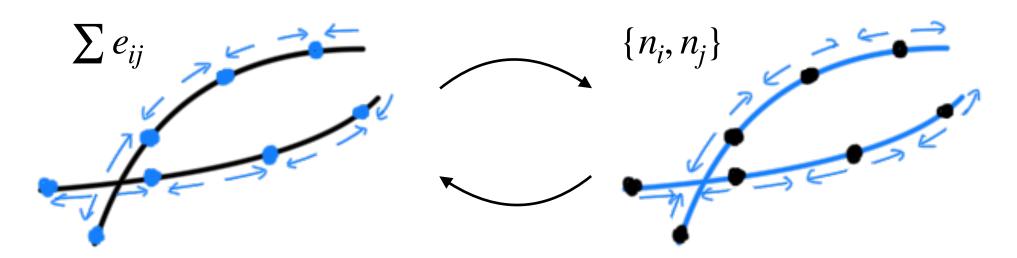


Ryan Liu

Graph Neural Networks

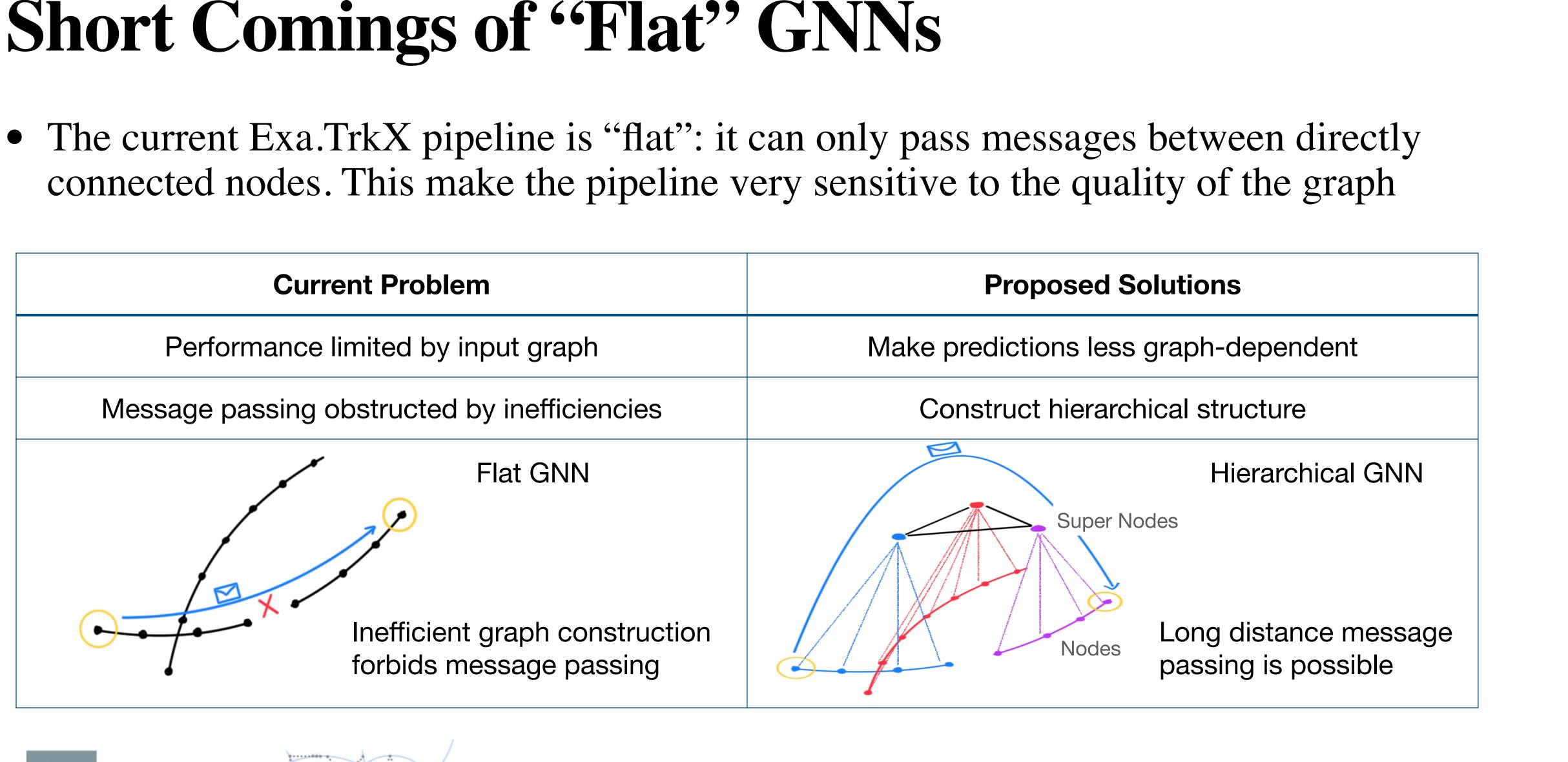
- Graph Neural Network (GNN) is a special type of neural network which takes a set of nodes ($X \in \mathbb{R}^{n \times d}$) and a graph (adjacency matrix $A \in \mathbb{R}^{n \times n}$) as input.
- **Permutation invariance**: for any permutation $P \in \mathbb{R}^{n \times n}$, inputting *PX* and *PAP*⁻¹ yields the same output as not permuted inputs.
- There are many ways of realizing a GNN, such as <u>graph convolutional network</u> (GCN), <u>graph attention network</u> (GAT), and <u>interaction network</u> (IN).





A sketch of Interaction Network

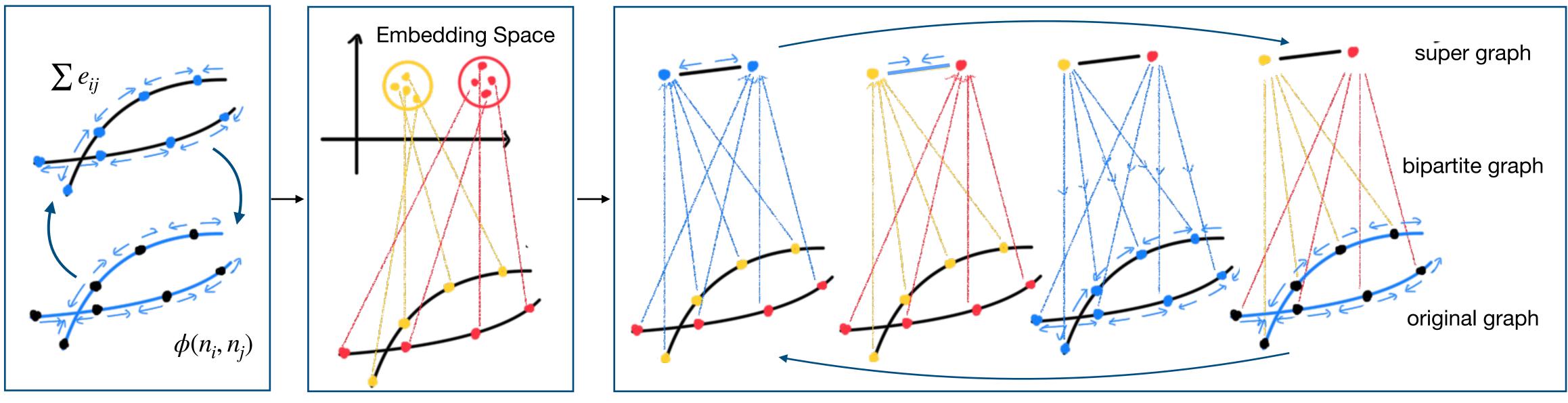
Short Comings of 'Flat'' GNNs



Hierarchical GNN for Robust Track Reconstruction

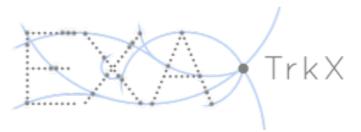
• A Hierarchical GNN can:

- 1. Pass long-distance messages across missing edges (<u>Rampášek et al., 2021</u>)
- 2. Capture higher level structure such as particles rather than just space points. (<u>Xing et al., 2021</u>)



Construct the Hierarchy

Flat GNN

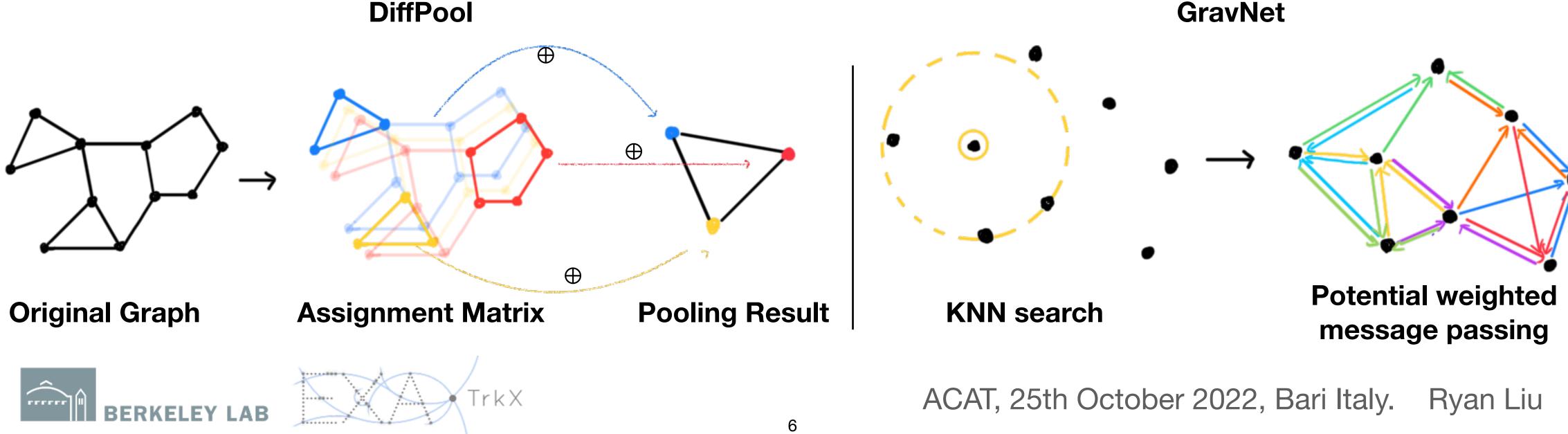


Hierarchical GNN

Previous Work: Pooling and Graph Construction

- finally create super graph by $A' = S^T A S$ where A is the adjacency matrix.

DiffPool



<u>DiffPool</u> proposes to use GNN to generate an assignment matrix $S \in \mathbb{R}^{N \times K}$, then aggregate node features $N \in \mathbb{R}^{N \times D}$ to form supernode features $X = S^T N \in \mathbb{R}^{K \times D}$, and

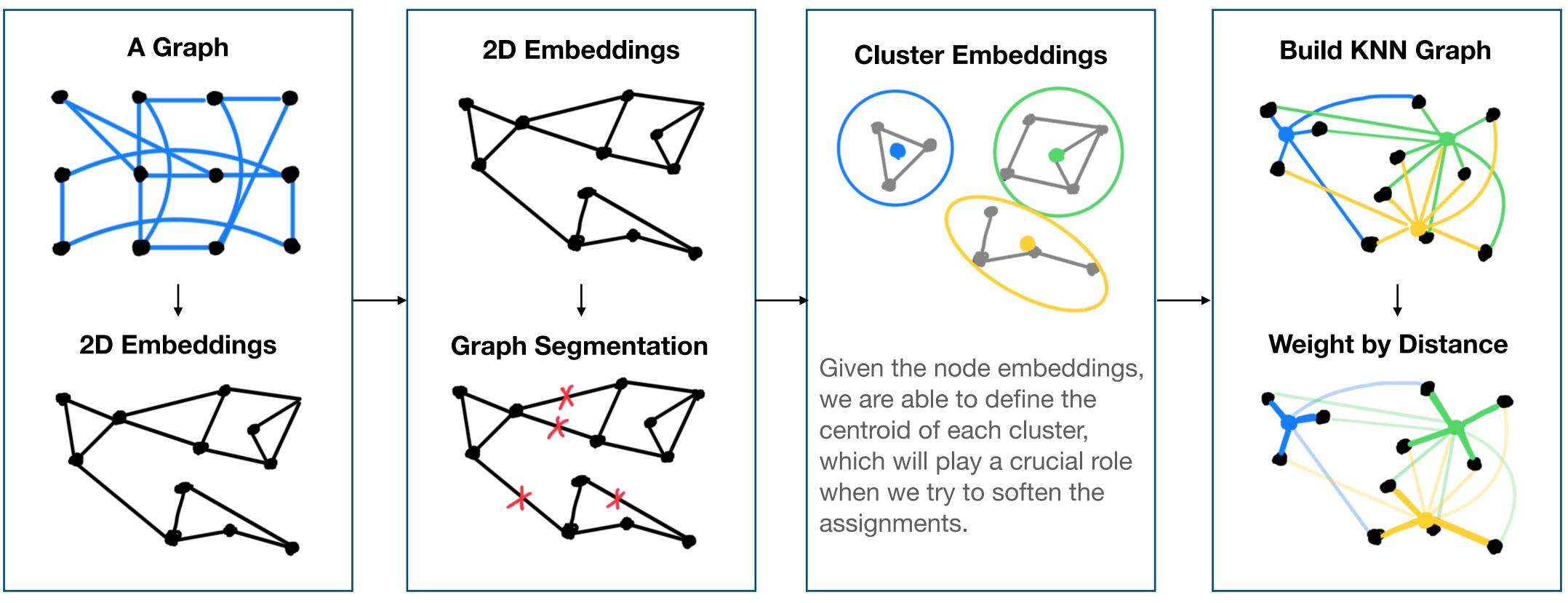
• <u>GravNet</u> builds a dynamic graph by using potential weighted edge and k-nearest **neighbor graph** to guarantee its sparsity. This graph is updated for each iteration.

Criteria for Pooling Algorithm

- **Sparseness** guarantees that the time complexity remains linear instead of quadratic.
- **Differentiability** is essential for gradient-based learning algorithms.
- Variable number of clusters is important in the context of HEP since number of collisions obey poisson distribution instead of being a constant.
- Soft assignments allow each node to have connections with multiple clusters, which is crucial for message passing between the super graph and original graph.

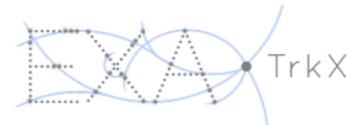
Model	Sparse	Differentiable	Variable #Clusters	Soft Assignment
DiffPool	×	\checkmark	×	\checkmark
GarNet	×	\checkmark	×	\checkmark
SAGPool		\checkmark	×	×
EdgePool		\checkmark	\checkmark	×
Our HGNN		\checkmark	\checkmark	\checkmark
BERKELEY LAB	TrkX	7	ACAT, 25th October 202	2, Bari Italy. Ryan Liu

Overview of the Algorithm



Generate Node Embeddings

Identify Clusters by Cutting Distant Connections



Generate Cluster Representation

Softly Assign Nodes to Supernodes (Clusters)

Possible Loss Functions for HGNN

• Metric learning: embed nodes into an embedding space and impose hinge embedding loss. Use spatial clustering algorithms to select track candidates.

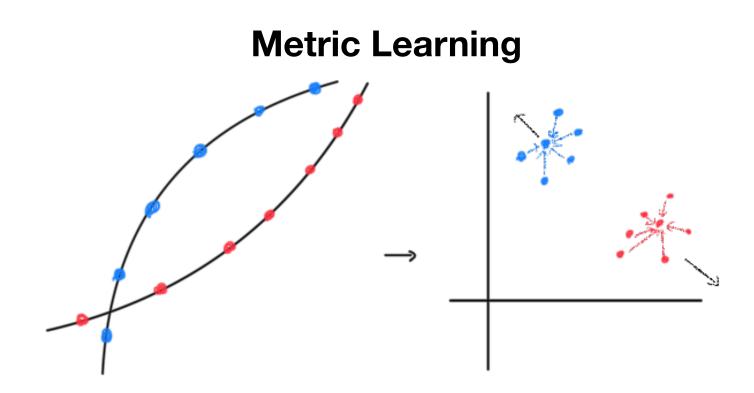
Pros: applicable to both HGNN and vanilla GNN.

Cons: spatial clustering algorithms are typically quadratic in size of point cloud.

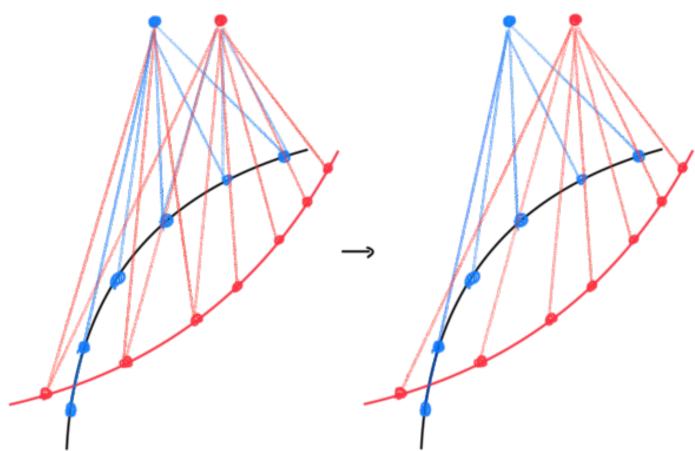
• Bipartite Classifier: at the end of HGNN, generate edge scores for assignments (bipartite edges). Select track candidates by applying a score cut.

Pros: capable of matching one hit to multiple tracks (shared space points)

Cons: ground truth of assignments is undefined, needs a matching process.



Bipartite Classifier



Dataset and Evaluation

- There are two **filter-processed** (see <u>Exa.TrkX pipeline</u> for reference) datasets:

 - O(1k) particles and O(10k) spacepoints per event.
- Evaluation metrics:

matched reconstructable particles Tracking efficiency: *#* reconstructable particles # matched reconstructable particles

Tracking purity: # track candidates - # matched non-reconstructable particles

- 2. Reconstructable particles are those which left more than 5 hits in the detector and has a $p_T > 1 GeV$

Full TrackML dataset: 2200 events of O(7k) particles and O(120k) spacepoints per event.

2. TrackML 1GeV background cut (i.e. remove any particle that has $p_T < 1 GeV$): 320 events of

1. Matched means that the candidate finds more than 50% of the particle and the particle occupies more than 50% of the candidate

Experiment Results — TrackML1GeV

- Embedding models provide an apple-to-apples comparison between HGNN and flat GNN.
- Bipartite classifier is HGNN with all its power unleashed with a loss function designed for it.
- Edge classifier is a baseline model, which is also part of the standard Exa.TrkX pipeline.
- Truth CC (truth connected components) is a measure of graph quality, which takes the input graph and prune it down with ground truth. This is the upper bound of edge classifier model performance.
- Timing performance of embedding models are dominated by spatial clustering algorithm (HDBSCAN).

	Embedding HGNN	Embedding IN	Bipartite HGNN	Edge Classifier IN	Truth CC
Tracking efficiency	97.32%	98.16%	98.86%	98.54%	99.91%
Tracking purity	95.78%	90.15%	98.76%	93.79%	95.28%
Time	0.5280	0.3514	0.2625	0.2108	N/A

Blue labels represent the best models; Green labels are the second best models.

Experiment Results—Inefficient Graph

- Randomly remove 20% of edges from the input graph to test models' robustness against inefficient input graphs.
- Edge classifier models are significantly impacted by inefficiencies of input graph.
- When the graph is inefficient, HGNN outperforms flat GNN on node embedding task.
- Bipartite classifiers has a tracking efficiency higher than Truth CC, which means that it has successfully reconstructed some of the broken tracks.

	Embedding HGNN	Embedding IN	Bipartite HGNN	Edge Classifier IN	Truth CC
Tracking efficiency	97.33%	92.78%	98.83%	91.93%	97.19%
Tracking purity	94.08%	92.19%	98.53%	74.52%	78.66%

Blue labels represent the best models; Green labels are the second best models.

Experiment Results – Full TrackML

- The full TrackML contains more spacepoints, which makes embedding a harder task. Edge classifier thus becomes more competitive since its inference is localized on graph.
- Bipartite Classifier was able to provide better tracking efficiency compared with Truth CC.
- In terms of embedding performance, Hierarchical GNN is always better than Interaction Network.
- Timing performance of embedding models become worse as its time complexity is quadratic.

	Embedding HGNN	Embedding IN	Bipartite HGNN	Edge Classifier IN	Truth CC
Tracking efficiency	94.70%	93.80%	97.80%	96.36%	97.75%
Tracking purity	32.74%	32.92%	35.31%	31.57%	28.27%
Time	8.1718	7.9430	1.0262	0.4188	N/A

Blue labels represent the best models; Green labels are the second best models.

Conclusion

- Hierarchical Graph Neural Network:
 - 1. HGNN is a variant of GNNs where a set of supernodes are created as coarsened representation of the original graph
 - 2. No additional supervision needed for the hierarchical structure construction.
 - 3. HGNN can recover broken tracks and is more robust against inefficiencies.
 - 4. HGNN is capable of performing message passing process across long distances.
- Ongoing process to train better Bipartite Classifier!
- All codes are available on <u>GitHub</u> and paper is coming soon!

References

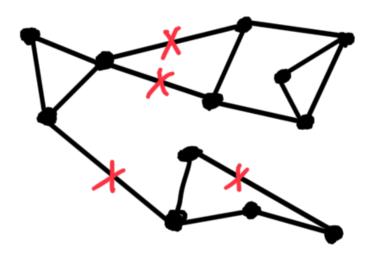
- information processing systems, 29.
- Diehl, F. (2019). Edge contraction pooling for graph neural networks. arXiv preprint arXiv:1905.10990.
- 3. particle tracking. The European Physical Journal C, 81(10), 1-14.
- 4. Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
- Lee, J., Lee, I., & Kang, J. (2019, May). Self-attention graph pooling. In International conference on machine learning (pp. 3734-3743). PMLR. 5.
- 6. networks. The European Physical Journal C, 79(7), 1-11.
- Machine Learning for Signal Processing (MLSP) (pp. 1-6). IEEE.
- Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903. 8.
- 9. the IEEE/CVF International Conference on Computer Vision (pp. 3467-3477).
- 10. Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W., & Leskovec, J. (2018). Hierarchical graph representation learning with differentiable pooling. Advances in neural information processing systems, 31.

Battaglia, P., Pascanu, R., Lai, M., & Jimenez Rezende, D. (2016). Interaction networks for learning about objects, relations and physics. Advances in neural Ju, X., Murnane, D., Calafiura, P., Choma, N., Conlon, S., Farrell, S., ... & Lazar, A. (2021). Performance of a geometric deep learning pipeline for HL-LHC Qasim, S. R., Kieseler, J., Iiyama, Y., & Pierini, M. (2019). Learning representations of irregular particle-detector geometry with distance-weighted graph Rampášek, L., & Wolf, G. (2021, October). Hierarchical graph neural nets can capture long-range interactions. In 2021 IEEE 31st International Workshop on Xing, Y., He, T., Xiao, T., Wang, Y., Xiong, Y., Xia, W., ... & Soatto, S. (2021). Learning hierarchical graph neural networks for image clustering. In Proceedings of

Backups

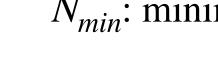
Backup: Clustering and Cluster Embeddings

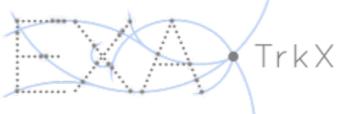
Graph Segmentation



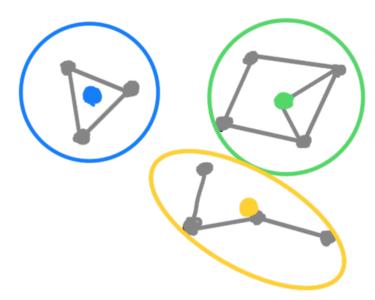
Algorithm 1: Determine Score Cut **Input** $\{n_i\}, G, s_{cut}, N_{min}$ Input $\{n_i\}, G, r$ $s_{ii} \leftarrow \tanh^{-1}(n_i \cdot n_j) \quad \forall (i,j) \in G$ $\{C_{\alpha}\} \leftarrow \{C_{\alpha}\}$ $p_{in}(s), p_{out}(s) \leftarrow \text{GaussianMixtureModel}[\{s_{ii}\}]$ $X_{\alpha} \leftarrow \text{norma}$ $s_{cut} \leftarrow \text{Solve}[\ln(p_{in}(s)) - \ln(p_{out}(s)) = r]$ **Return** S_{cut} , S_{ij} **Return** X_{α}

r: cluttering granularity; $\{n_i\}$: node embeddings





Cluster Embeddings



Algorithm 2: Compute Cluster Embeddings

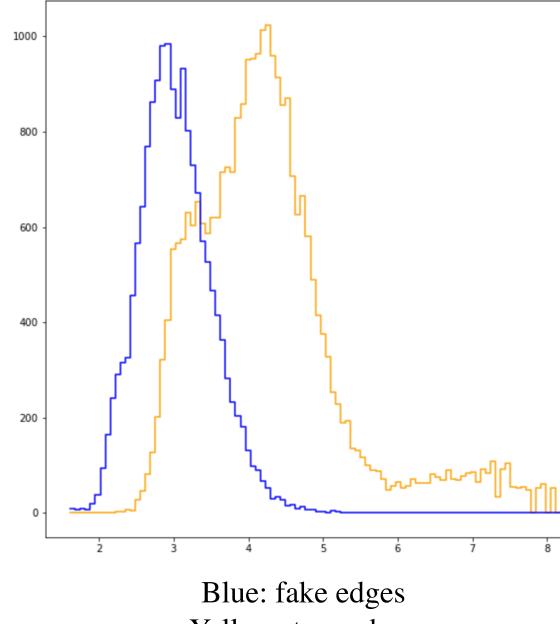
 $\{C_{\alpha}\} \leftarrow \text{ConnectedComponents}[\{(i, j) | s_{ij} > s_{cut}\}]$

$$C_{\alpha} | N(C_{\alpha}) > N_{min} \}$$

alize $\left[\frac{1}{N(C_{\alpha})} \sum_{i \in C_{\alpha}} n_i \right]$

 N_{min} : minimum size of a cluster

Distribution of *S*_{*ii*}

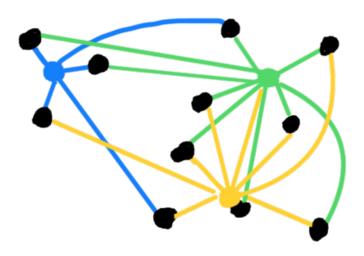


Yellow: true edges

*the embedding space in this work is \mathbb{S}^n instead of \mathbb{R}^n : we normalize all embeddings under L_2 norm

Backup: Assignment Graph Construction

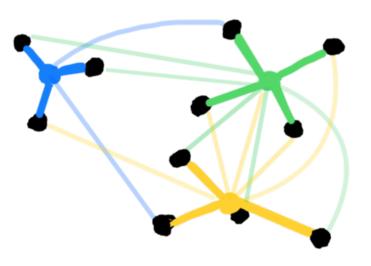
Build KNN Graph



Algorithm 3: Build KNN graph **Input** $\{n_i\}, \{X_{\alpha}\}, G, c$ For each $i \in G$: $G_{assignment} \leftarrow$ **Find** $id_i(k) := n_i$'s k-th nearest X's index $\mathcal{N}(i) \leftarrow \{ \mathrm{id}_i(k) \, | \, k \leq c \}$ $w_{i\alpha} = \frac{1}{\Sigma}$ **Return** { $\mathcal{N}(i) \mid i \in G$ }

c: desired connectivity

Weight by Distance



- **Algorithm 4**: Weight Edges by Similarity
- **Input** $\{n_i\}, \{X_{\alpha}\}, G, \{\mathcal{N}(i)\}, f(s)$

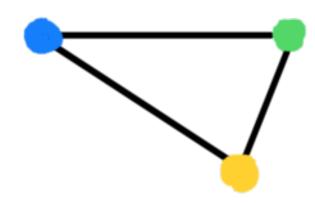
$$\{(i,\alpha) \mid \alpha \in \mathcal{N}(i), i \in G\}$$

 $s_{i\alpha} \leftarrow \text{BatchNorm}[n_i \cdot X_{\alpha}] \quad \forall (i, \alpha) \in G_{assignment} \quad 2.$

$$f(s_{i\alpha})$$

Return $G_{assignment}, w_{i\alpha}$

The Super Graph



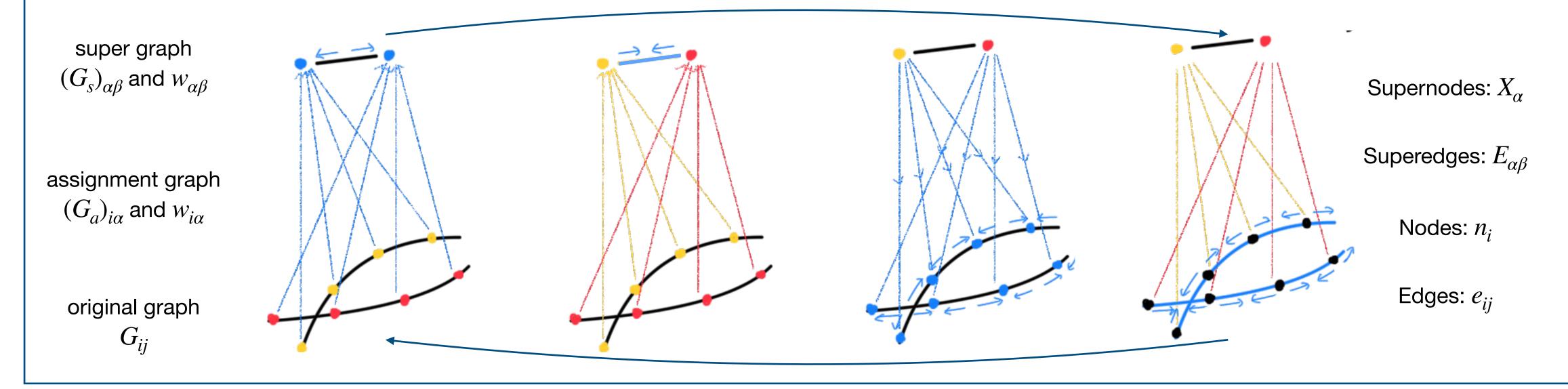
Build the Super Graph

To build the super graph, the procedure is completely identical, except that we must:

- 1. Use $\{X_{\alpha}\}$ as both source and destination.
- Symmetrize the graph
- 3. Use a different weighting f(s)

f is chosen to be e^s for assignment graph, and sigmoid(s) for super graph.

Backup: Hierarchical Message Passing

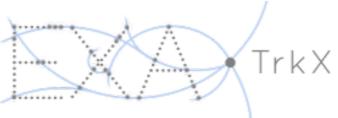


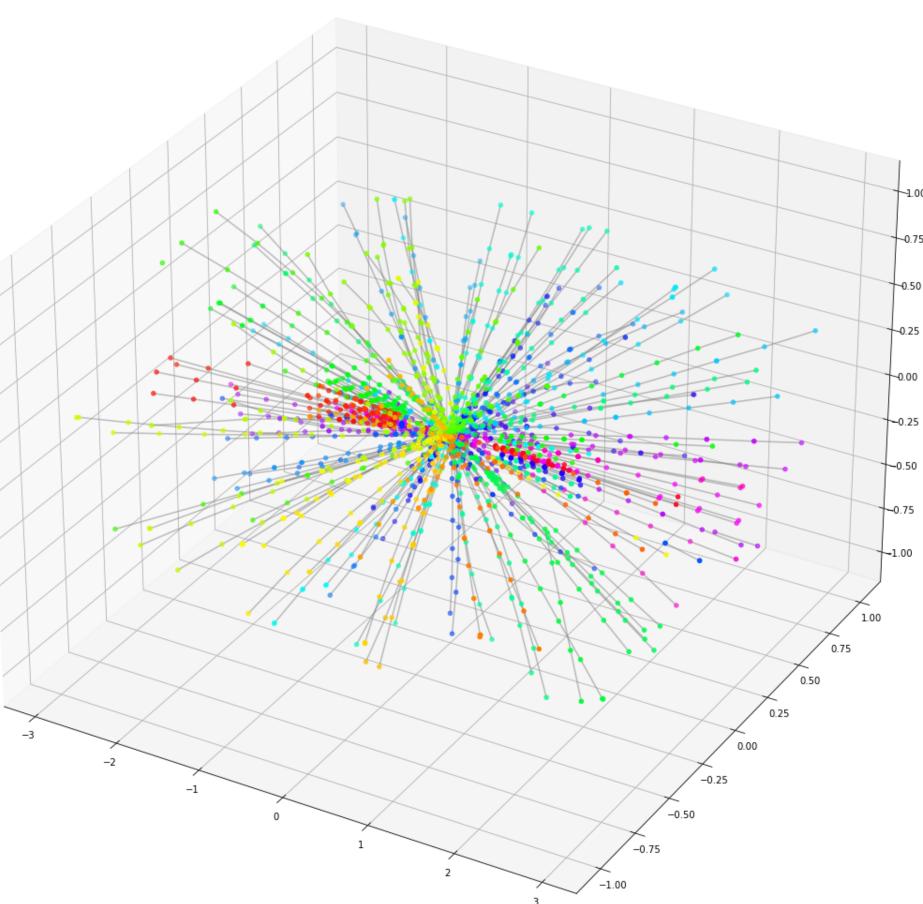
Step 1: Update SupernodeStep 2: Update Superedge $\operatorname{input}_{1}(\alpha) \leftarrow \sum_{i:(i,\alpha)\in G_{a}} w_{i\alpha}n_{i}$ $E_{\alpha\beta} \leftarrow \phi_{se}(E_{\alpha\beta}, X_{\alpha}, X_{\beta})$ $\operatorname{input}_{2}(\alpha) \leftarrow \sum_{\beta:(\alpha,\beta)\in G_{s}} w_{\alpha\beta}E_{\alpha\beta}$ $X_{\alpha} \leftarrow \phi_{sn}(X_{\alpha}, \operatorname{input}_{1}(\alpha), \operatorname{input}_{2}(\alpha))$

Step 3: Update NodeStep 4: Update Edge $\operatorname{input}_1(i) \leftarrow \sum_{\alpha:(i,\alpha)\in G_a} w_{i\alpha} X_{\alpha}$ $e_{ij} \leftarrow \phi_e(e_{ij}, n_i, n_j)$ $\operatorname{input}_2(i) \leftarrow \sum_{j:(i,j)\in G} e_{ij}$ $n_i \leftarrow \phi_n(n_i, \operatorname{input}_1(i), \operatorname{input}_2(i))$

Backup: What Does the Algorithm Learn?

- For small sized event (e.g. 1GeV cut), it is possible to leave intermediate embedding space completely unsupervised.
- To demonstrate the properties of the intermediate embedding space, we do the following visualization:
 - 1. Use T-SNE transformation to reduce the dimensionality from $n \sim O(10)$ to 1
 - 2. Randomly select k particles and plot them in 3D space using spacepoint coordinates in the detector
 - 3. Use color maps to color each spacepoint by the reduced embeddings, which is now one dimensional
- Such visualization scheme can capture the distance relation in high-dimensional embedding space by coloring closer hits with similar colors.

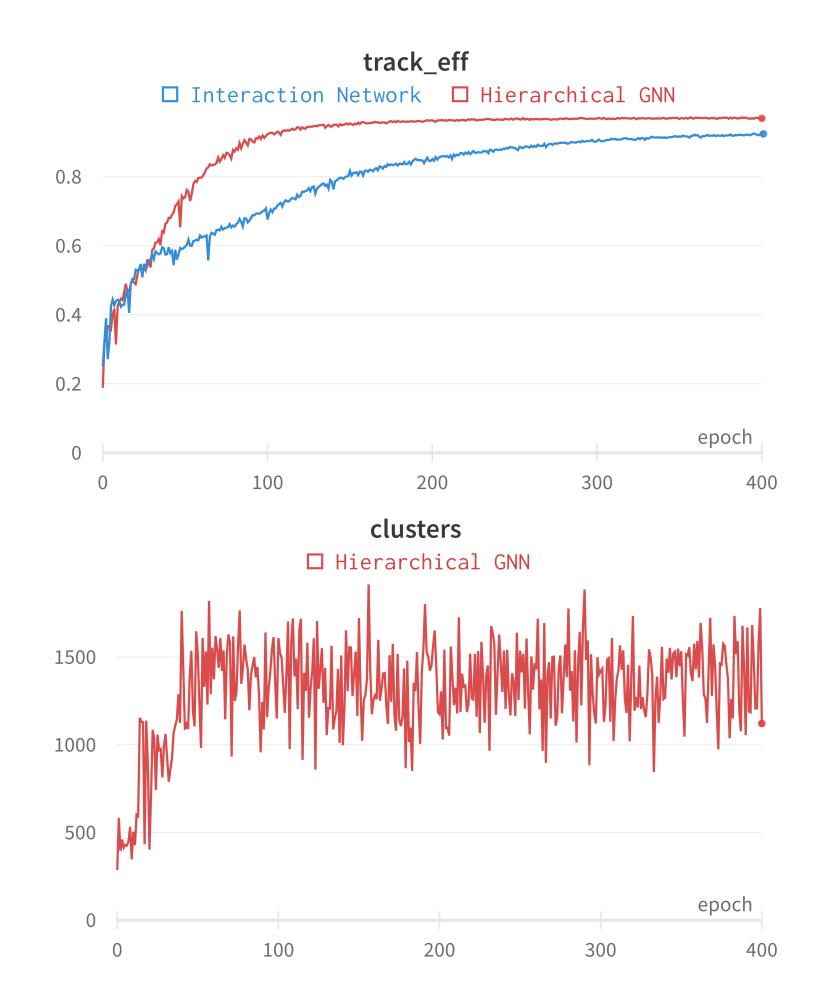




TrackML1GeV Node Embedding Intermediate Embedding Space

Backup: Training Behavior

- It's worth noting that even if HGNN has more parameter and more complicated architecture, its convergence is no worse than flat GNN.
- Surprisingly, on the TrackML1GeV dataset, the model learns about the same number of clusters and particles (untrue for Full TrackML where lowpT tracks dominate the event)
- As we move on to Full TrackML, a "training wheel loss" is needed for training. It is basically a hinge embedding loss which fades out after 50 epochs.



TrackML1GeV, showing first 400 epochs