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Motivation 

Precisely observing the properties of known particles is one way of searching for New Physics. This approach requires precision experiments, like COMET, to 

produce a huge number of events. To prepare for such experiments, it is desirable to obtain real-size mock datasets, which Monte Carlo simulations, like 

GEANT4, cannot produce within reasonable times. Statistical models must be used instead. The COMET collaboration, for instance, will use Generative Ad-

versarial Networks (GANs) to generate a real-size fake dataset equivalent to 10
19 

events (Phase-I). GAN are unsupervised learners, meaning that standardi-

zed GAN evaluation metrics are critical to their development in HEP, and to support searches for New Physics with precision experiment. 

The COMET experiment 

Particle hits in the Cylindrical Drift Chamber 

Evaluation method 

Results 

• The COherent Muon to Electron Transition 

(COMET) experiment is a two-phase experiment  

which will look for  µ + Al
13

 → e + Al
13 

conversions. 

• The final single event sensitivity will be 2.6×10
-17

. 

• In phase-I, O(10
16

) muons will be produced using 

O(10
19

) protons on target 

• Decay products are detected in a Cylindrical Drift 

Chamber (CDC). 

• In the Standard Model, lepton flavour con-

servation results from an accidental sym-

metry. 

• Charged Lepton Flavour Violation would be 

an indicator of new physics 

• Neutrinoless muon to electron conversion in 

muonic atoms (µ+N→e+N) is a CLFV pro-

cess with a clean signature: a single 105 

MeV electron. 

• 1 ms of detector data costs 30 

weeks of computation using MC 

simulations. 

• Most hits in the CDC are noise-like, 

while the number of hits in recon-

structible tracks is relatively small 

(3:1 ratio). 

• Definition of reconstructible track: p 

> 50MeV/c and a number of hits ≥ 

4. 

• Noise-like hit generation is dele-

gated to a Generative Adversarial 

Network (GAN). 

New fermion New boson 

SUSY 

• In computer vision, the standard GAN metric is Fré-

chet Inception Distance (FID): 

• We use three deep CNNs as feature extractors: 

• Inception-v3 (Iv3) [Szegedy, Christian and Van-

houcke, 2015], a 2D CNN pre-trained on Ima-

geNet; 

• A Fine-tuned Iv3 (FTIv3), a 2D CNN pretrained on 

ImageNet and fine-tuned to classifiy noise vs 

track hit sequences; 

• A 3D CNN, only trained on MC hit sequences, for 

noise vs track classification. 

• After training the extractor on MC noise and track 

sequences, we measure the FID between the distri-

butions of feature vectors produced by GAN and MC 

–generated noise sequences. 

• We wish to compare the space-time struc-

ture of MC and GAN hit sequences. 

• MC and GAN samples are passed into the 

feature extractors as 3D (2 space dim, 1 

time dim) images. 

• For Iv3 and FTIv3, we take the 2D projec-

tions of the 3D images (for FTIv3, the pro-

jections are combined together using a 

Conv2D layer).  

Figure 1: Possible µ→e conversion channels. Adapted from [COMET Collabora-

tion, 2020] 

Firgure 2: COMET Phase-I Layout (right) and 

Cylindrical Drift Chamber (left). Adapted 

from [COMET Collaboration, 2020] 

• The GAN generates sequences of noise-

like hits. Each hit has 4 features: 

 Energy deposit (MeV) 

 Hit time (ns) 

 Distance of closest approach to the 

CDC wire (mm) 

 Wire ID 

• The distribution of particle-level features 

is well reproduced by the GAN. What 

about higher level, space-time fea-

tures? Figure 4: GAN and Geant4 (MC) generated distributions for one 

particle-level feature: wire ID. 
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Figure 3: Examples of hit sequences labelled as noise-like (top) and as be-

longing to reconstructible tracks (bottom). Three  projection planes of the 

3D image of the CDC. 

Figure 5: Training and using a feature extractor. During the trai-

ning of the feature extractor, the dashed path is used. During 

FID computation, the solid path is used. xG4,n and xG4,t are our 

two classes: noise and track sequences. 

Figure 6: 3D space-time images of the CDC hit sequences. Left: noise-like 

hits. Right: hits belonging to reconstructible tracks. 

Table I: FID values. Relative FID corresponds to the GAN-Gean4 distance over the Geant4-

Geant4 distance. 

• Two generative models were 

compared: 

 GAN 

 GAN with self-attention 

layers. 

• We introduced relative FID to 

compare scores for different 

extractors. 

 

• Effectively unbiased FIDs for 

Iv3 are obtained by extrapola-

ting to an infinite number of 

samples 

• Distributions in feature space 

can be visualized using t-SNE 

or UMAP 

• We measured FID with respect to features which are re-

levant to noise/track classification. 

• StyleGAN-XL (image generation SOTA in 2022) has a 

relative FID of ~1 [Shmelkov, 2018], indicating that the 

CDC GAN performs well. 

• The choice of feature extractor can be extended to any 

classification task, making the evaluation method gene-

ralizable. 

• Our method demonstrates the superiority of the GAN 

with self-attention layers. 

Figure 7: Effectively unbiased FID values obtained by extrapolating FID vs 1/N [Chong, 2019]. 

Figure 8: UMAP plot of the 267-dimensional feature vectors 

of hit MC and GAN hit sequences obtained by the 3D CNN. 

Conclusions 


