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Introduction

Motivation and aim

As we have heard already event generation could be quicker

One-loop matrix element evaluations are slow – O(second) per evaluation

Accelerate evaluations by building a fast and accurate emulator

Current emulators limited to low final-state multiplicities [1, 2] or have
lower per-point accuracy [3]

Inclusion of universal QCD infrared structure in emulator enables
accurate modelling, even for higher multiplicities
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Previous work: e−e+ → qq̄ + gluons at tree-level [4]
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[4] D. Maître and H. Truong, A factorisation-aware Matrix element emulator, JHEP 11 (2021), p. 066
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Factorisation of matrix elements
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Antenna functions [5]

X0
ijk and X1

ijk are derived from physical matrix elements and so by construction
have the correct infrared behaviour in the collinear and soft regions.

Class Radiation
Antenna functions

Tree-level One-loop

Quark-antiquark qq̄ → qgq̄ A0
3 A1

3, Ã1
3, Â1

3

Quark-gluon
qg → qgg D0

3 D1
3, D̂1

3

qg → qQQ̄ E0
3 E1

3, Ẽ1
3, Ê1

3

Gluon-gluon
gg → ggg F0

3 F1
3, F̂1

3

gg → gqq̄ G0
3 G1

3, G̃1
3, Ĝ1

3

image credit to James Currie

[5] A. Gehrmann–De Ridder, T. Gehrmann, E.W.N. Glover, Antenna Subtraction at NNLO, JHEP 09 (2005),
p. 056 7 / 22
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NLO K-factor ansatz

K-factors naturally of order unity
Avoid multi-peaked distribution of |M(1)|2

Factorisation of K-factor
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(4)
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Neural network is algorithm of choice

Neural networks are good function approximators

Shown to work well at tree-level

Accelerated naturally on GPUs

Generic interfaces available for HEP applications
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Model inputs and outputs

Inputs (100k datapoints)

p = [E, px, py, pz] ,
√

s = 1000 GeV

rijk =
sjk

sij + sjk

ρijk =

√
1 +

4rijk(1 − rijk)sijsjk
sijksik

sij = (pi + pj)
2

µR

(5)

Outputs

{C0,Cijk} K with ansatz (4)
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Neural network hyperparameters

Table: Hyperparameters of the neural network and their values.

Parameter Value
Hidden layers 3
Nodes in hidden layers [64, 64, 64]
Activation function swish

Weight initialiser Glorot uniform
Loss function MAE (k-factor), MSE (one-loop matrix element)
Batch size 256
Optimiser Adam
Learning rate 10−3

Callbacks EarlyStopping, RatioEarlyStopping,
ReduceLROnPlateau

12 / 22
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Neural network architecture
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Comparison to naive model
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Distribution of 5j errors
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Renormalisation scale dependence

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

k
−
∑
X

1 3
/X

0 3

e+e− → qq̄g

MG -
∑
X1

3/X
0
3 (A) NN -

∑
X1

3/X
0
3 (B) µR training range

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0
e+e− → qq̄gg

−2

0

2

4

6

8

10
e+e− → qq̄ggg

0.75

1.00

1.25

R
at

io
(B

)
/

(A
)

250 1000 4000
µR

−0.01

0.00

0.01

D
iff

er
en

ce
(A

)
-

(B
)

250 1000 4000
µR

250 1000 4000
µR

17 / 22



Introduction Extension to one-loop matrix elements Constructing the emulator Results Summary and outlook References

Total cross-section predictions
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Evaluation time
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Summary

Possible to accurately emulate NLO K-factors for up to 2 → 5 process

Building in universal QCD IR structure into model enables soft and
collinear region predictions to be well behaved

Accumulated error in total cross-section much lower than statistical Monte
Carlo error

Orders of magnitude speed up whilst keeping errors to the 1% level
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Outlook

Extend methodology to pp collisions at NLO QCD
Bridge gap between proof of concept and actual usage in event generators

again see Timo’s talk on Wednesday afternoon for a possible application in
event unweighting
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Evaluation time breakdown
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