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Inclusion of universal QCD infrared structure in emulator enables
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Antenna functions [5]

X9

ijk
have the correct infrared behaviour in the collinear and soft regions.

and X7, are derived from physical matrix elements and so by construction

Antenna functions

Class Radiation
Tree-level One-loop
Quark-antiquark  qq — qgq Al Al Aé Aé
99— 499 D§ D}, D}
Quark-gluon
99— qQQ E§ B}, B3, B}
99 — 999 Fg F, Fj
Gluon-gluon
99 — 944 a3 Gs, G, G;

[5] A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, Antenna Subtraction at NNLO, JHEP 09 (2005),
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Antenna functions [5]
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Neural network is algorithm of choice

Neural networks are good function approximators

v

+ Shown to work well at tree-level
« Accelerated naturally on GPUs
v

Generic interfaces available for HEP applications
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Neural network hyperparameters

Table: Hyperparameters of the neural network and their values.

Parameter Value

Hidden layers 3

Nodes in hidden layers [64, 64, 64]

Activation function swish

Weight initialiser Glorot uniform

Loss function MAE (k-factor), MSE (one-loop matrix element)

Batch size 256

Optimiser Adam

Learning rate 1073

Callbacks EarlyStopping, RatioEarlyStopping,
ReduceLROnPlateau
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Neural network architecture
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Distribution of 55 errors
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Renormalisation scale dependence
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Total cross-section predictions
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Evaluation time
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Summary

Possible to accurately emulate NLO K-factors for up to 2 — 5 process

Building in universal QCD IR structure into model enables soft and

collinear region predictions to be well behaved

Accumulated error in total cross-section much lower than statistical Monte

Carlo error

Orders of magnitude speed up whilst keeping errors to the 1% level
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Outlook

@® Extend methodology to pp collisions at NLO QCD
@ Bridge gap between proof of concept and actual usage in event generators

O again see Timo's talk on Wednesday afternoon for a possible application in

event unweighting
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