Emulation of high multiplicity NLO K-factors in e^-e^+ collisions

ACAT 2022

Henry Truong with Daniel Maître Institute for Particle Physics Phenomenology Durham University

Durham, United Kingdom

25th October 2022

1/22

- 2. Extension to one-loop matrix elements
- 3. Constructing the emulator
- 4. Results
- 5. Summary and outlook

Motivation and aim

- imes As we have heard already event generation could be quicker
- × One-loop matrix element evaluations are slow $\mathcal{O}(\text{second})$ per evaluation

Motivation and aim

- × As we have heard already event generation could be quicker
- × One-loop matrix element evaluations are slow O(second) per evaluation
- \rightarrow Accelerate evaluations by building a **fast** and **accurate** emulator

Motivation and aim

- imes As we have heard already event generation could be quicker
- × One-loop matrix element evaluations are slow O(second) per evaluation
- ightarrow Accelerate evaluations by building a **fast** and **accurate** emulator
- Current emulators limited to low final-state multiplicities [1, 2] or have lower per-point accuracy [3]

 J. Aylett-Bullock, S. Badger, R. Moodie, Optimising simulations for diphoton production at hadron colliders using amplitude neural networks, JHEP 08 (2021), p. 066
 S. Badger, A. Butter, M. Luchmann, S. Pitz, T. Plehn, Loop Amplitudes from Precision Networks, [arXiv:2206.14831]
 J. Aylett-Bullock and S. Badger, Using neural networks for efficient evaluation of high multiplicity scattering amplitudes, JHEP 06 (2020), p. 114

Motivation and aim

- imes As we have heard already event generation could be quicker
- × One-loop matrix element evaluations are slow O(second) per evaluation
- \rightarrow Accelerate evaluations by building a **fast** and **accurate** emulator
- Current emulators limited to low final-state multiplicities [1, 2] or have lower per-point accuracy [3]
- Inclusion of universal QCD infrared structure in emulator enables accurate modelling, even for higher multiplicities

 J. Aylett-Bullock, S. Badger, R. Moodie, Optimising simulations for diphoton production at hadron colliders using amplitude neural networks, JHEP 08 (2021), p. 066
 S. Badger, A. Butter, M. Luchmann, S. Pitz, T. Plehn, Loop Amplitudes from Precision Networks, [arXiv:2206.14831]
 J. Aylett-Bullock and S. Badger, Using neural networks for efficient evaluation of high multiplicity scattering amplitudes, JHEP 06 (2020), p. 114

k References

Previous work: $e^-e^+ \rightarrow q\bar{q} + \text{gluons}$ at tree-level [4]

[4] D. Maître and H. Truong, A factorisation-aware Matrix element emulator, JHEP 11 (2021), p. 066

4 / 22

2. Extension to one-loop matrix elements

- 3. Constructing the emulator
- 4. Results
- 5. Summary and outlook

tor Results Summary and outlook References

Factorisation of matrix elements

Tree-level

$$\underbrace{i}_{j} \rightarrow \underbrace{i}_{j} \rightarrow \underbrace{j}_{j}$$

$$|\mathcal{M}_{n+1}^{(0)}|^2 \to X_{ijk}^0 |\mathcal{M}_n^{\text{tree}}|^2$$

(1)

Factorisation of matrix elements

Tree-level

$$\underbrace{i}_{j} \rightarrow \underbrace{i}_{j} \rightarrow \underbrace{i}_{j}$$

$$|\mathcal{M}_{n+1}^{(0)}|^2 o X_{ijk}^0 |\mathcal{M}_n^{\mathrm{tree}}|^2$$

One-loop

 $|\mathcal{M}_{n+1}^{(1)}|^2 \equiv 2\text{Re}(\mathcal{M}_{n+1}^{1-\text{loop}}\mathcal{M}_{n+1}^{\text{tree},*}) \to X_{ijk}^0 |\mathcal{M}_n^{(1)}|^2 + X_{ijk}^1 |\mathcal{M}_n^{(0)}|^2$ (2)

6 / 22

(1)

Antenna functions [5]

 X_{ijk}^0 and X_{ijk}^1 are derived from physical matrix elements and so by construction have the **correct infrared behaviour in the collinear and soft regions**.

Class	Radiation	Antenna functions	
		Tree-level	One-loop
Quark-antiquark	$q\bar{q} ightarrow qg\bar{q}$	A_3^0	A_3^1 , \tilde{A}_3^1 , \hat{A}_3^1
Quark-gluon	qg ightarrow qgg	D_{3}^{0}	D_3^1 , \hat{D}_3^1
	$qg ightarrow qQ\bar{Q}$	E_{3}^{0}	E_{3}^{1} , \tilde{E}_{3}^{1} , \hat{E}_{3}^{1}
Gluon-gluon	gg ightarrow ggg	F_3^0	F_3^1 , \hat{F}_3^1
	$gg ightarrow gq \bar q$	G_{3}^{0}	G_3^1 , \tilde{G}_3^1 , \hat{G}_3^1

[5] A. Gehrmann–De Ridder, T. Gehrmann, E.W.N. Glover, Antenna Subtraction at NNLO, JHEP 09 (2005),
 p. 056
 7 / 22

Antenna functions [5]

[5] A. Gehrmann–De Ridder, T. Gehrmann, E.W.N. Glover, Antenna Subtraction at NNLO, JHEP 09 (2005),
 p. 056
 7 / 22

2. Extension to one-loop matrix elements

3. Constructing the emulator

- 4. Results
- 5. Summary and outlook

References

NLO K-factor ansatz

✓ K-factors naturally of order unity

- K-factors naturally of order unity
- ✓ Avoid multi-peaked distribution of $|M^{(1)}|^2$

- K-factors naturally of order unity
- ✓ Avoid multi-peaked distribution of $|M^{(1)}|^2$

Factorisation of K-factor

$$K_{n+1} = \frac{|\mathcal{M}_{n+1}^{(1)}|^2}{|\mathcal{M}_{n+1}^{(0)}|^2}$$

$$\to \frac{X_{ijk}^0 |\mathcal{M}_n^{(1)}|^2 + X_{ijk}^1 |\mathcal{M}_n^{(0)}|^2}{X_{ijk}^0 |\mathcal{M}_n^{(0)}|^2} = K_n + \frac{X_{ijk}^1}{X_{ijk}^0}$$

(3)

- K-factors naturally of order unity
- ✓ Avoid multi-peaked distribution of $|M^{(1)}|^2$

Factorisation of K-factor

$$K_{n+1} = \frac{|\mathcal{M}_{n+1}^{(1)}|^2}{|\mathcal{M}_{n+1}^{(0)}|^2} \rightarrow \frac{X_{ijk}^0 |\mathcal{M}_n^{(1)}|^2 + X_{ijk}^1 |\mathcal{M}_n^{(0)}|^2}{X_{ijk}^0 |\mathcal{M}_n^{(0)}|^2} = K_n + \frac{X_{ijk}^1}{X_{ijk}^0}$$
(3)

Ansatz

$$\Rightarrow \quad K_{n+1} = C_0 + \sum_{\{ijk\}} C_{ijk} \frac{X_{ijk}^1}{X_{ijk}^0} \tag{4}$$

9/22

✓ Neural networks are good function approximators

- Neural networks are good function approximators
- ✓ Shown to work well at tree-level

- Neural networks are good function approximators
- ✓ Shown to work well at tree-level
- ✓ Accelerated naturally on GPUs

- Neural networks are good function approximators
- ✓ Shown to work well at tree-level
- ✓ Accelerated naturally on GPUs
- ✓ Generic interfaces available for HEP applications

Model inputs and outputs

Inputs (100k datapoints)

$$p = [E, p_x, p_y, p_z], \quad \sqrt{s} = 1000 \text{ GeV}$$
$$r_{ijk} = \frac{s_{jk}}{s_{ij} + s_{jk}}$$
$$\rho_{ijk} = \sqrt{1 + \frac{4r_{ijk}(1 - r_{ijk})s_{ij}s_{jk}}{s_{ijk}s_{ik}}}$$
$$s_{ij} = (p_i + p_j)^2$$

 μ_R

(5)

Model inputs and outputs

 μ_R

Inputs (100k datapoints)

$$p = [E, p_x, p_y, p_z], \quad \sqrt{s} = 1000 \text{ GeV}$$
$$r_{ijk} = \frac{s_{jk}}{s_{ij} + s_{jk}}$$
$$\rho_{ijk} = \sqrt{1 + \frac{4r_{ijk}(1 - r_{ijk})s_{ij}s_{jk}}{s_{ijk}s_{ik}}}$$
$$s_{ij} = (p_i + p_j)^2$$

Outputs

 $\{C_0, C_{ijk}\} \rightarrow K$ with ansatz (4)

(5)

Neural network hyperparameters

Table: Hyperparameters of the neural network and their values.

Parameter	Value
Hidden layers	3
Nodes in hidden layers	[64, 64, 64]
Activation function	swish
Weight initialiser	Glorot uniform
Loss function	MAE (k-factor), MSE (one-loop matrix element)
Batch size	256
Optimiser	Adam
Learning rate	10^{-3}
Callbacks	EarlyStopping, RatioEarlyStopping,
	ReduceLROnPlateau

Neural network architecture

13/22

- 2. Extension to one-loop matrix elements
- 3. Constructing the emulator

4. Results

5. Summary and outlook

Comparison to naive model

or Results

Summary and outlook

References

Distribution of 5j errors

or Results

Renormalisation scale dependence

mulator Results

Total cross-section predictions

18/22

Evaluation time

- 2. Extension to one-loop matrix elements
- 3. Constructing the emulator
- 4. Results

5. Summary and outlook

- Possible to **accurately** emulate NLO K-factors for up to $2 \rightarrow 5$ process
- Building in universal QCD IR structure into model enables soft and collinear region predictions to be well behaved

- Possible to **accurately** emulate NLO K-factors for up to $2 \rightarrow 5$ process
- Building in universal QCD IR structure into model enables soft and collinear region predictions to be well behaved
- Accumulated error in total cross-section **much lower** than statistical Monte Carlo error

- Possible to **accurately** emulate NLO K-factors for up to $2 \rightarrow 5$ process
- Building in universal QCD IR structure into model enables soft and collinear region predictions to be well behaved
- Accumulated error in total cross-section much lower than statistical Monte Carlo error
- Orders of magnitude speed up whilst keeping errors to the 1% level

Outlook

- Extend methodology to pp collisions at NLO QCD
- Bridge gap between proof of concept and actual usage in event generators
 - again see Timo's talk on Wednesday afternoon for a possible application in event unweighting

References

- [1] Simon Badger et al. "Loop Amplitudes from Precision Networks". In: (June 2022).
- [2] Joseph Aylett-Bullock et al. "Optimising simulations for diphoton production at hadron colliders using amplitude neural networks". In: JHEP 08 (2021), p. 066.
- [3] Simon Badger and Joseph Bullock. "Using neural networks for efficient evaluation of high multiplicity scattering amplitudes". In: JHEP 06 (2020), p. 114.
- [4] Daniel Maître and Henry Truong. "A factorisation-aware Matrix element emulator". In: JHEP 11 (2021), p. 066.
- [5] A. Gehrmann-De Ridder et al. "Antenna subtraction at NNLO". In: JHEP 09 (2005), p. 056.

Evaluation time breakdown

