

Quantum Neural Networks force fields generation

Oriel Kiss, Francesco Tacchino, Sofia Vallecorsa and Ivano Tavernelli

Keypoint: We propose a quantum neural network (QNN) for the computation of energy and forces and use it successfully on simple molecules.

Paper: Kiss, et al., Mach. Learn.: Sci. Technol. 3 035004 (2022)

Molecular Force Fields

Methods:

- **1. Goal:** compute the energy and forces between atoms in a molecule, given its configuration.
- 2. Why: Being able to run molecular dynamics (MD) by integrating Newton's equations of motion.
- **3. Useful in:** computational physics, chemistry, material sciences, drug design, etc.

DE GENÈVE

- Approximate methods from first principles (density-functional theory (DFT) or coupled clusters (CC):
 - precise
 - expensive and slow (on the fly).
- 2. Machine learning (ML)
 - trained on DFT or experimental data set
 - really fast once trained
- 3. Quantum neural networks:
 - seems to be more expressive

O. Kiss - QTI

Classical NNs for Potential Energy Surface (PES) [1]

- The model should respect the inherent symmetry of the system (*rotation, translation, permutation* of the atoms of the same kind).
- For every atom, a set of symmetry functions G_i^μ is constructed from the cartesian coordinates.
- **3. Forces** are obtained as negative gradient of the PES:

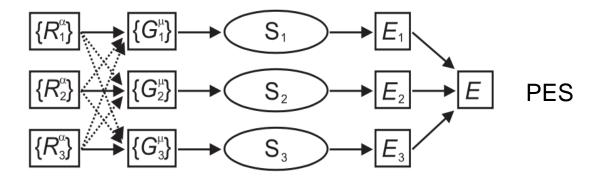
$$F_{i,j} = -\frac{\partial E}{\partial R_i^j}$$

$\mathcal{L}(x,\Theta) = \frac{1}{N} \sum_{n=1}^{N} (E^{(n)} - E^{(n)}_{exact})^2 + \frac{\chi}{3Na} \sum_{n,i,j} (F^{(n)}_{i,j} - F^{(n)}_{exact,i,j})^2$ The **loss function** depends in general on both energy and forces.

[1] Jörg Behler and Michele Parrinello. *Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces*. In: Physical Review Letter 98, 146401 (Sept. 2006)

O. Kiss - QTI

Symmetry functions

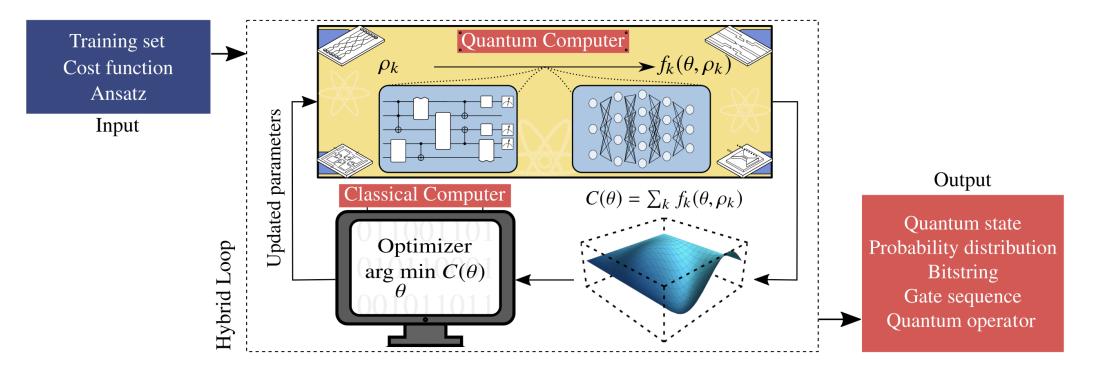


Cartesian coordinates

Sub neural networks

Quantum machine learning models

Quantum circuits as heuristic machine learning models.



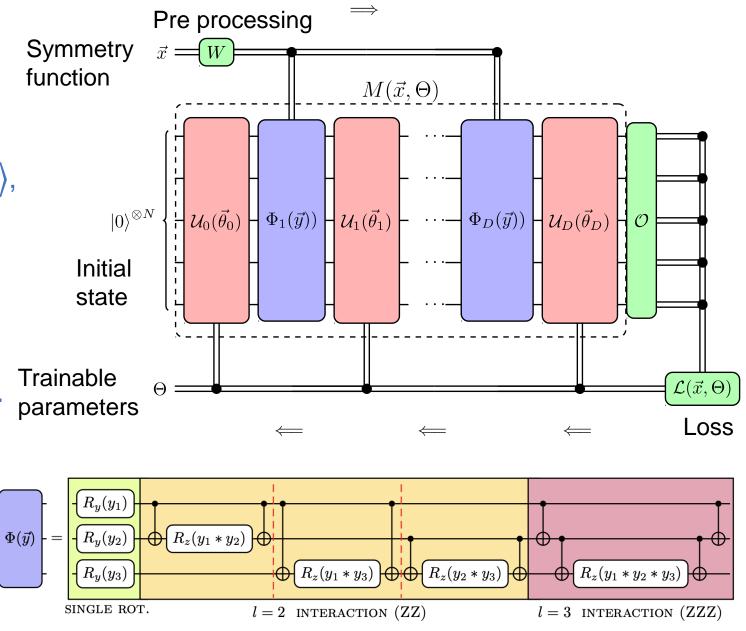
Cerezo et al., Nat Rev Phys **3**, 625–644 (2021)

Quantum Neural Networks

- 1. QNN: $f_{\Theta}(x) = \langle 0 | M^{\dagger}(x, \Theta) \mathcal{O}M(x, \Theta) | 0 \rangle$, M is the quantum circuit, $\mathcal{O} = \sigma_z^1$.
- 2. Partial Fourier series Schuld, et al., Phys. Rev. A 103, 032430 (2021)
- 3. Trainable: Hardware efficient ansatz.
- 4. Input: classical feature map W + repeated quantum feature map encoding to increase expressivity.

DUANTUM

UNIVERSITÉ DE GENÈVE



Kiss, et al., Mach. Learn.: Sci. Technol. 3 035004 (2022)

Application to Force Fields (Chemistry)

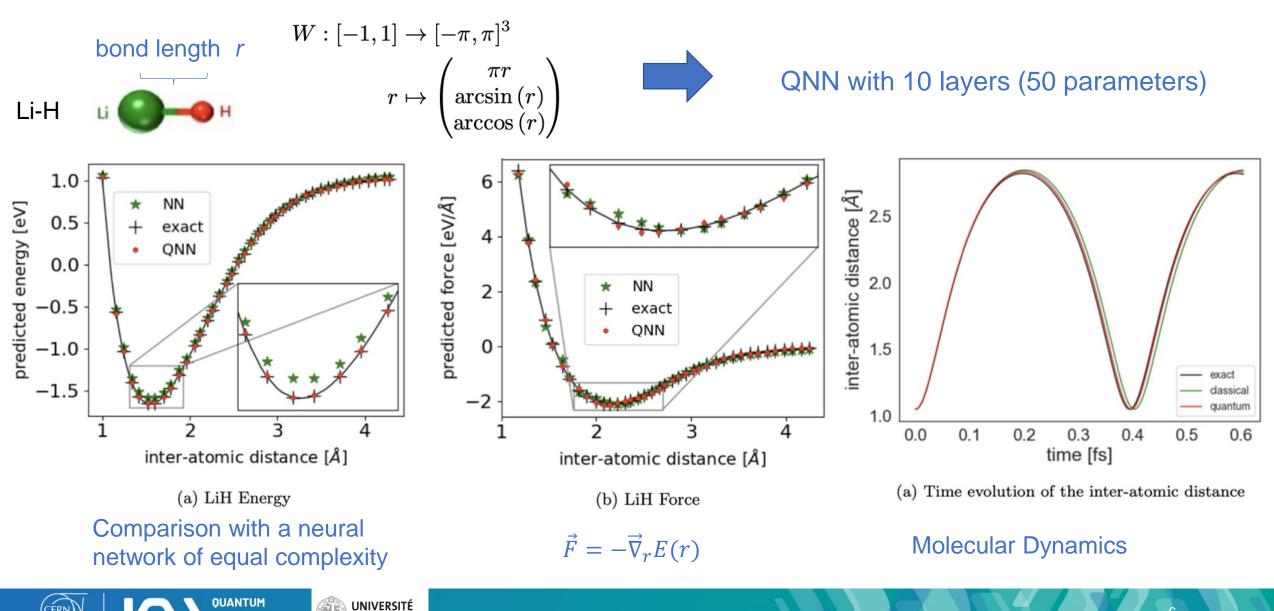
DE GENÈVE

FACULTÉ DES SCIENCES

TECHNOLOGY

NITIATIVE

Kiss, Tacchino, *et al., Mach. Learn.: Sci. Technol.* **3** 035004 (2022)

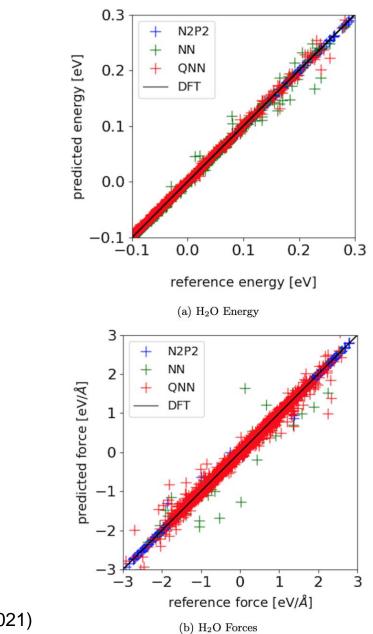


Triatomic Molecule (H2O)

- **1. 3 degrees of freedom**: 1 angle, 2 bond lengths.
- **2.** Data Preprocessing: scale between -1 and 1, apply $W(x) = \arcsin(x)$.
- **3. Circuit design**: N=3, D=12, full feature map (I=3), full trainable feature map (I=3).
- **4. Optimization:** Cobyla ($\chi = 1$) on 300 data points.

$\mathbf{H}_2\mathbf{O}$	RMSE(E)	RMSE(F)	d_{300}/d	\mathbf{d}	# params
QNN	0.005	0.06	0.72	87	Forces
NN	0.006	0.1	0.25	87	
n2p2	$7 imes 10^{-4}$	0.01	0.04	1642	

Effective dimension



Energy

Abbas et al, the power of quantum neural networks, In Nat. Comput. Sci Comput. Sci 1 403–409, (2021)

Umbrella motion of Hydronium (H₃O)

- 1. 6 degrees of freedom: 1 dihedral angle, 2 angle, 3 bond lengths.
- 2. Data Preprocessing: scale between -1 and 1, apply W(x) = arcsin(x).
- **3. Circuit design**: N=6, D=10, linear feature map (I=3), linear trainable feature map (I=3).
- **4. Optimization:** ADAM ($\chi = 0$) on 500 data points.

H_3O^+	RMSE(E)	RMSE(F)	$\mathbf{d_{500}}/\mathbf{d}$	d
QNN	3.7×10^{-3}	0.26	0.67	135
NN	4.2×10^{-3}	0.207	0.19	135
N2P2	5×10^{-4}	0.19	0.03	2214

UNIVERSITÉ

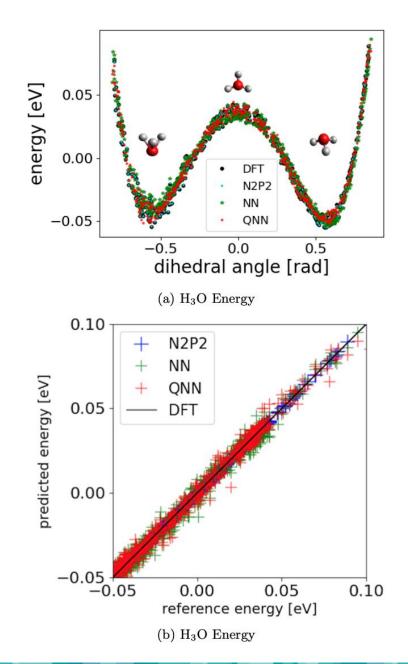
DE GENÈVE

FACULTÉ DES SCIENCES

DUANTUM

TECHNOLOGY

TIATIVE



Conclusions, potential advantages & outlook

- 1. QNNs are able to compete with **similar neural networks** in the task of learning PES and force fields.
- 2. Potential quantum advantages are primarily linked to the better expressivity and higher effective dimension of QNNs with respect to classical counterparts.
- 3. Future work:
 - More complex architectures (quantum convolutional NN) or equivariant QNN.
 - Work with quantum data (from dynamical VQA).
 - Incorporate fragmentation techniques.

Thank you for your attention! Questions?

Kiss, Tacchino, *et al., Mach. Learn.: Sci. Technol.* **3** 035004 (2022) Jörg Behler and Michele Parrinello. : Physical Review Letter 98, 146401 (2006) Schuld *et al., Phys. Rev. A* **103**, 032430 (2021) Abbas *et al.*, In Nat. Comput. Sci **1** 403–409, (2021)

