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Quantum Neural Networks
force fields generation

Oriel Kiss, Francesco Tacchino, Sofia Vallecorsa and Ivano Tavernelli

Keypoint: We propose a quantum neural network (QNN) for the computation   

of energy and forces and use it successfully on simple molecules.

Paper: Kiss, et al., Mach. Learn.: Sci. Technol. 3 035004 (2022)
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Molecular Force Fields

1. Goal: compute the energy and forces 

between atoms in a molecule, given 

its configuration.

2. Why: Being able to run molecular 

dynamics (MD) by integrating 

Newton’s equations of motion.

3. Useful in: computational physics, 

chemistry, material sciences, drug 

design, etc.

Methods:

1. Approximate methods from first principles

(density-functional theory (DFT) or coupled

clusters (CC):

- precise

- expensive and slow (on the fly) .

2. Machine learning (ML)

- trained on DFT or experimental data set

- really fast once trained

3. Quantum neural networks:

- seems to be more expressive
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Classical NNs for Potential 

Energy Surface (PES) [1]

1. The model should respect the inherent

symmetry of the system (rotation,

translation, permutation of the atoms of

the same kind).

2. For every atom, a set of symmetry

functions Gi
𝜇 is constructed from the

cartesian coordinates.

3. Forces are obtained as negative gradient of

the PES:

𝐹𝑖,𝑗 = −
𝜕𝐸

𝜕𝑅𝑖
𝑗

[1] Jörg Behler and Michele Parrinello.  Generalized Neural-Network Representation of High-Dimensional Potential-Energy Surfaces. In: Physical Review Letter 

98, 146401 (Sept. 2006)
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The loss function depends in general on both energy and forces.
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Quantum machine learning models
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Quantum circuits as heuristic machine learning models. 

Cerezo et al., Nat Rev Phys 3, 625–644 (2021)
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Quantum Neural Networks

1. QNN: fΘ 𝑥 = 0 𝑀†(𝑥, Θ)𝒪𝑀(𝑥, Θ) 0 ,                    

M is the quantum circuit, 𝒪 = 𝜎𝑧
1.

2. Partial Fourier series

Schuld, et al.,  Phys. Rev. A 103, 032430 (2021)

3. Trainable: Hardware efficient ansatz.

4. Input: classical feature map W + 

repeated  quantum feature map 

encoding to increase expressivity.
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Loss

Kiss, et al., Mach. Learn.: Sci. Technol. 3 035004 (2022)
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Application to Force Fields (Chemistry) 

Li-H

bond length  r

QNN with 10 layers (50 parameters)

Comparison with a neural 

network of equal complexity
Molecular DynamicsԦ𝐹 = −∇𝑟𝐸(𝑟)

Kiss, Tacchino, et al., Mach. Learn.: 

Sci. Technol. 3 035004 (2022)
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Triatomic Molecule (H2O)

1. 3 degrees of freedom: 1 angle, 2 bond lengths.

2. Data Preprocessing: scale between -1 and 1, apply 

W(x) = arcsin(x).

3. Circuit design:  N=3, D=12, full feature map (l=3), 

full trainable feature map (l=3).

4. Optimization: Cobyla (𝜒 = 1) on 300 data points.

# params

Effective dimension

Energy

Forces

Abbas et al, the power of quantum neural networks,  In Nat. Comput. Sci Comput. Sci 1 403–409, (2021)
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Umbrella motion of 

Hydronium (H3O)

1. 6 degrees of freedom: 1 dihedral angle,  2 angle, 3 bond lengths.

2. Data Preprocessing: scale between -1 and 1, apply W(x) = 

arcsin(x).

3. Circuit design:  N=6, D=10, linear feature map (l=3), linear trainable 

feature map (l=3).

4. Optimization: ADAM (𝜒 = 0) on 500 data points.
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Conclusions, potential advantages & outlook

1. QNNs are able to compete with similar neural networks in the task of learning PES

and force fields.

2. Potential quantum advantages are primarily linked to the better expressivity and

higher effective dimension of QNNs with respect to classical counterparts.

3. Future work:

- More complex architectures (quantum convolutional NN) or

equivariant QNN.

- Work with quantum data (from dynamical VQA).

- Incorporate fragmentation techniques.



Thank you for your attention!
Questions?

oriel.kiss@cern.ch
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