Quantum-inspired machine learning

Domenico Pomarico
Research fellowship QuantHEP
Paper: MDPI Mathematics 2021, 9(4), 410 DOI: $10.3390 /$ math 9040410
in collaboration with A. Fanizzi, N. Amoroso, R. Bellotti, A. Biafora, S. Bove, V. Didonna, D. La Forgia, M. I. Pastena, P. Tamborra, A. Zito, V. Lorusso, R. Massafra.

Contents

- Classification systems theory

Combine devices, data elaboration \& classification SVM feature maps

- Tree tensor networks

Building up a circuit with qubits
Variational quantum algorithms

- Our application case

Summary about breast cancer biology
Feature selection \& performances

Classification systems theory

population set of outcomes Ω

Classification systems theory

population set of outcomes Ω

data set given
by some sensors $\quad \Omega \xrightarrow{s} \mathcal{D}$
$\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$

Classification systems theory

population set of outcomes Ω
$\Omega \xrightarrow{\boldsymbol{T}} \mathcal{L}$

$$
\begin{aligned}
& n \text {-label set } \\
\mathcal{L}= & \left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}
\end{aligned}
$$

data set given
by some sensors $\quad \Omega \xrightarrow{s} \mathcal{D}$
$\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$

Classification systems theory

population set of outcomes Ω
$\Omega \xrightarrow{\boldsymbol{T}} \mathcal{L}$

$$
\begin{aligned}
& n \text {-label set } \\
\mathcal{L}= & \left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}
\end{aligned}
$$

data set given
by some sensors $\quad \Omega \xrightarrow{s} \mathcal{D} \xrightarrow{\Psi} \mathcal{F}$
$\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$

Classification systems theory

population set of outcomes Ω
$\Omega \xrightarrow{\boldsymbol{T}} \mathcal{L}$

$$
\begin{aligned}
& n \text {-label set } \\
\mathcal{L}= & \left\{\ell_{1}, \ell_{2}, \ldots, \ell_{n}\right\}
\end{aligned}
$$

data set given
by some sensors $\Omega \xrightarrow{s} \mathcal{D} \xrightarrow{\psi} \mathcal{F} \xrightarrow{c_{\theta}} \mathcal{L}$
$\mathcal{D}=\left\{x_{1}, \ldots, x_{N}\right\}$
$A_{\boldsymbol{\theta}}=\boldsymbol{c}_{\boldsymbol{\theta}} \circ \Psi \circ \boldsymbol{s}$ classification system

Linear/kernel supervised learning in least-squares SVM

Labeled dataset: $\quad y_{i}=\left\{\begin{array}{l}+1 \text { if } x_{i} \in A \\ -1 \text { if } x_{i} \in B\end{array}\right.$
Cost function: $\quad \mathcal{J}(\boldsymbol{\theta})=\left\|\mathcal{M}_{\boldsymbol{\theta}}(\boldsymbol{x})-\boldsymbol{y}\right\|^{2}$

A linear decision function: $\mathcal{M}_{\boldsymbol{\theta}}(\boldsymbol{x})=W_{\boldsymbol{\theta}} \cdot \boldsymbol{x}$ fails the classification in this case.

Linear/kernel supervised learning in least-squares SVM

Labeled dataset: $\quad y_{i}=\left\{\begin{array}{l}+1 \text { if } x_{i} \in A \\ -1 \text { if } x_{i} \in B\end{array}\right.$
Cost function: $\quad \mathcal{J}(\boldsymbol{\theta})=\left\|\mathcal{M}_{\boldsymbol{\theta}}(\boldsymbol{x})-\boldsymbol{y}\right\|^{2}$

A linear decision function: $\mathcal{M}_{\boldsymbol{\theta}}(\boldsymbol{x})=W_{\boldsymbol{\theta}} \cdot \boldsymbol{x}$ fails the classification in this case.

Non-linear feature map $\Psi(\boldsymbol{x})$, e.g.

$$
\Psi\left(x_{i}\right)=\left(x_{i, 1}, x_{i, 2}, x_{i, 1}^{2}+x_{i, 2}^{2}\right)
$$

with $\mathcal{M}_{\boldsymbol{\theta}}(\Psi)=W_{\boldsymbol{\theta}} \cdot \Psi(\boldsymbol{x})$ able to classify, but involving high computational complexity!

Feature map

Let's label features with x_{i}^{j} for $i=1, \ldots, N$ and for patient $j=1, \ldots, M$.

$$
\text { Rescale: } x_{i}^{j} \longrightarrow \frac{x_{i}^{j}}{\max _{j} x_{i}^{j}} \xrightarrow{\psi}\binom{\sin \left(\frac{\pi}{2} x_{i}^{j}\right.}{\cos \left(\frac{\pi}{2} x_{i}^{j}\right)}=\psi_{i}^{j} \in \mathbb{R}^{2} \quad \begin{gathered}
\text { single variable } \\
\text { feature map }
\end{gathered}
$$

Feature map

Let's label features with x_{i}^{j} for $i=1, \ldots, N$ and for patient $j=1, \ldots, M$.

$$
\text { Rescale: } x_{i}^{j} \longrightarrow \frac{x_{i}^{j}}{\max _{j} x_{i}^{j}} \xrightarrow{\psi}\binom{\sin \left(\frac{\pi}{2} x_{i}^{j}\right)}{\cos \left(\frac{\pi}{2} x_{i}^{j}\right)}=\psi_{i}^{j} \in \mathbb{R}^{2} \begin{gathered}
\text { single variable } \\
\text { feature map }
\end{gathered}
$$

For each patient the global feature vector is:

Example: $N=4$

$$
\psi^{j}=\bigotimes_{j=1}^{N} \psi_{i}^{j} \in \mathbb{R}^{2^{N}}
$$

Feature map

Let's label features with x_{i}^{j} for $i=1, \ldots, N$ and for patient $j=1, \ldots, M$.

For each patient the global feature vector is:
Example: $\quad N=4$

$$
\Psi^{j}=\bigotimes_{j=1}^{N} \psi_{i}^{j} \in \mathbb{R}^{2^{N}}
$$

Feature map

Let's label features with x_{i}^{j} for $i=1, \ldots, N$ and for patient $j=1, \ldots, M$.
Rescale: $x_{i}^{j} \longrightarrow \frac{x_{i}^{j}}{\max _{j} x_{i}^{j}} \xrightarrow{\psi}\binom{\sin \left(\frac{\pi}{2} x_{i}^{j}\right)}{\cos \left(\frac{\pi}{2} x_{i}^{j}\right)}=\psi_{i}^{j} \in \mathbb{R}^{2} \quad \begin{gathered}\text { single variable } \\ \text { feature map }\end{gathered}$
For each patient the global feature vector is: $\Psi^{j}=\bigotimes_{j=1}^{N} \psi_{i}^{j} \in \mathbb{R}^{2^{N}}$
Example: $\quad N=4$

$$
R_{y}(\theta)=\mathrm{e}^{-\mathrm{i} \sigma_{y} \theta} \in \mathrm{SO}(2)
$$

$$
R_{y}(\theta) \psi_{i}=\left(\mathbb{1} \cos (\theta)-\mathrm{i} \sigma_{y} \sin (\theta)\right) \psi_{i}=\left(\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right)\binom{\sin \left(\frac{\pi}{2} x_{i}\right)}{\cos \left(\frac{\pi}{2} x_{i}\right)}
$$

A crash course on spins (aka qubits!)

$$
\Psi=a \psi_{\uparrow}+b \psi_{\downarrow}, \quad \psi_{\uparrow}=\binom{1}{0}, \quad \psi_{\downarrow}=\binom{0}{1}, \quad a, b \in \mathbb{C}
$$

We can act on such a spin state by means of Pauli and identity matrices:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

A crash course on spins (aka qubits!)

$$
\Psi=a \psi_{\uparrow}+b \psi_{\downarrow}, \quad \psi_{\uparrow}=\binom{1}{0}, \quad \psi_{\downarrow}=\binom{0}{1}, \quad a, b \in \mathbb{C}
$$

We can act on such a spin state by means of Pauli and identity matrices:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Example: spin flip up projection down projection

$$
\sigma_{x} \psi_{\uparrow}=\psi_{\downarrow}, \quad P_{\uparrow} \Psi=a \psi_{\uparrow}, \quad P_{\downarrow} \Psi=b \psi_{\downarrow}
$$

A crash course on spins (aka qubits!)

$$
\Psi=a \psi_{\uparrow}+b \psi_{\downarrow}, \quad \psi_{\uparrow}=\binom{1}{0}, \quad \psi_{\downarrow}=\binom{0}{1}, \quad a, b \in \mathbb{C}
$$

We can act on such a spin state by means of Pauli and identity matrices:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Example: spin flip up projection down projection

$$
\sigma_{x} \psi_{\uparrow}=\psi_{\downarrow}, \quad P_{\uparrow} \Psi=a \psi_{\uparrow}, \quad P_{\downarrow} \Psi=b \psi_{\downarrow}
$$

Spin interactions

$$
\text { Example: } \quad H=J \sigma_{z} \otimes \sigma_{z}
$$

$$
\begin{aligned}
& H \psi_{\uparrow} \otimes \psi_{\uparrow}=J \psi_{\uparrow} \otimes \psi_{\uparrow} \\
& H \psi_{\downarrow} \otimes \psi_{\downarrow}=J \psi_{\downarrow} \otimes \psi_{\downarrow} \\
& H \psi_{\uparrow} \otimes \psi_{\downarrow}=-J \psi_{\uparrow} \otimes \psi_{\downarrow}
\end{aligned}
$$

A crash course on spins (aka qubits!)

$$
\Psi=a \psi_{\uparrow}+b \psi_{\downarrow}, \quad \psi_{\uparrow}=\binom{1}{0}, \quad \psi_{\downarrow}=\binom{0}{1}, \quad a, b \in \mathbb{C}
$$

We can act on such a spin state by means of Pauli and identity matrices:

$$
\sigma_{x}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -\mathrm{i} \\
\mathrm{i} & 0
\end{array}\right), \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \mathbb{1}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

Example: spin flip up projection down projection

$$
\sigma_{x} \psi_{\uparrow}=\psi_{\downarrow}, \quad P_{\uparrow} \Psi=a \psi_{\uparrow}, \quad P_{\downarrow} \Psi=b \psi_{\downarrow}
$$

Spin interactions

$$
\text { Example: } \quad H=J \sigma_{z} \otimes \sigma_{z}
$$

$$
\begin{aligned}
& H \psi_{\uparrow} \otimes \psi_{\uparrow}=J \psi_{\uparrow} \otimes \psi_{\uparrow} \\
& H \psi_{\downarrow} \otimes \psi_{\downarrow}=J \psi_{\downarrow} \otimes \psi_{\downarrow} \\
& H \psi_{\uparrow} \otimes \psi_{\downarrow}=-J \psi_{\uparrow} \otimes \psi_{\downarrow}
\end{aligned}
$$

Multiple spins may interact subsequently

Controlled NOT gates let data interact!

$$
\text { Classically XOR: } \quad \mathrm{CNOT}=\sigma_{x} \otimes P_{\uparrow}+\mathbb{1} \otimes P_{\downarrow}
$$

Example:

$$
\mathrm{CNOT} \psi_{\downarrow} \otimes \psi_{\downarrow}=\psi_{\downarrow} \otimes \psi_{\downarrow}, \quad \mathrm{CNOT} \psi_{\downarrow} \otimes \psi_{\uparrow}=\psi_{\uparrow} \otimes \psi_{\uparrow}
$$

In our case: \quad CNOT $\psi_{1} \otimes \psi_{2}$ the interaction of ψ_{1} depends on the control qubit ψ_{2}.

Controlled NOT gates let data interact!

Classically XOR: $\quad \mathrm{CNOT}=\sigma_{x} \otimes P_{\uparrow}+\mathbb{1} \otimes P_{\downarrow}$
Example:
CNOT $\psi_{\downarrow} \otimes \psi_{\downarrow}=\psi_{\downarrow} \otimes \psi_{\downarrow}, \quad \operatorname{CNOT} \psi_{\downarrow} \otimes \psi_{\uparrow}=\psi_{\uparrow} \otimes \psi_{\uparrow}$

In our case: \quad CNOT $\psi_{1} \otimes \psi_{2}$
the interaction of ψ_{1} depends on the control qubit ψ_{2}.

$$
H=\operatorname{CNOT} R_{y}\left(\theta_{1}\right) \otimes R_{y}\left(\theta_{2}\right)
$$

Example: binary features

$$
\begin{array}{lll}
x_{1}=1 & \longrightarrow & \psi_{\uparrow} \\
x_{2}=0 & \longrightarrow & \psi_{\downarrow}
\end{array}
$$

$$
H \psi_{\uparrow} \otimes \psi_{\downarrow}=\operatorname{CNOT}\binom{\cos \left(\theta_{1}\right)}{\sin \left(\theta_{1}\right)} \otimes\binom{-\sin \left(\theta_{2}\right)}{\cos \left(\theta_{2}\right)}
$$

Least-squares SVM via measurements

Least-squares SVM via measurements

Least-squares SVM via measurements

$$
P_{\uparrow} \otimes \mathbb{1}=\mathcal{M} \text { measurement } \xrightarrow{\rightarrow}
$$

Least-squares SVM via measurements

Index $j=1, \ldots, M$ for the patients sample:

$$
\text { score } \quad \mathcal{M}_{\boldsymbol{\theta}}\left(\Psi^{j}\right)=\left\langle\mathcal{U}_{\boldsymbol{\theta}} \Psi^{j}, \mathcal{M} \mathcal{U}_{\boldsymbol{\theta}} \Psi^{j}\right\rangle
$$

and minimize the mean squared error cost function:

$$
\begin{aligned}
& \text { Index } j=1, \ldots, M \text { for the patients sample: } \\
& \text { score } \quad \mathcal{M}_{\boldsymbol{\theta}}\left(\Psi^{j}\right)=\left\langle\mathcal{U}_{\boldsymbol{\theta}} \Psi^{j}, \mathcal{M} \mathcal{U}_{\boldsymbol{\theta}} \Psi^{j}\right\rangle \\
& \text { and minimize the mean squared error cost function: } \\
& \left.\qquad P_{\uparrow} \otimes \boldsymbol{\theta}\right)=\frac{1}{M} \sum_{j=1}^{M}\left(\mathcal{M}_{\boldsymbol{\theta}}\left(\Psi^{j}\right)-y^{j}\right)^{2} \\
& R_{y}\left(\theta_{3}\right) \otimes \mathbb{M} \quad \text { measurement }
\end{aligned}
$$

Tree tensor network encoding

Ising model ground state: $\quad H=-\sum_{j} \sigma_{z}^{(j)} \sigma_{z}^{(j+1)}$

$$
a \psi_{\uparrow}+b \psi_{\downarrow} \xrightarrow{\text { encoding }} \quad a \psi_{\uparrow} \otimes \psi_{\uparrow} \cdots \otimes \psi_{\uparrow}+b \psi_{\downarrow} \otimes \psi_{\downarrow} \cdots \otimes \psi_{\downarrow}
$$

Our case study: breast cancer lymph node metastasis

Farnsworth, R.H.; Achen, M.G.; Stacker, S.A. The evolving role of lymphatics in cancer metastasis. Curr. Opin. Immunol. 2018, 53, 64-73.

Our case study: breast cancer lymph node metastasis

Lymphangiogenesis \& Lymphatic vessel remodelling

Dilation of collecting lymphatic vessels

Lymphangiogenesis \& remodelling prior to tumour cell arrival

Distant organ metastasis (establishment of metastatic niche)
Tumour cells O Growth factors/Cytokines O Extracellular vesicles Lymphatic vessels

Our dataset: 634 patients with 214 lymph nodes metastasis
Purpose of the study: detection of lymph nodes metastasis in a pre-operative stage

- age

Patients' features: Tumour features:

- diameter
- grading
- PgR
- in situ component - Ki67
- multiplicity
- HER2/neu
- histologic type

Farnsworth, R.H.; Achen, M.G.; Stacker, S.A. The evolving role of lymphatics in cancer metastasis. Curr. Opin. Immunol. 2018, 53, 64-73.

Performance evaluation

Given the number of negative n and positive p patients, with classifier results involving true positive $t p$ and true negative $t n$, we define

$$
\text { accuracy }=\frac{t n+t p}{n+p}, \quad \text { specificity }=\frac{t n}{n}, \quad \text { sensitivity }=\frac{t p}{p} .
$$

Performance evaluation

Given the number of negative n and positive p patients, with classifier results involving true positive $t p$ and true negative $t n$, we define

$$
\text { accuracy }=\frac{t n+t p}{n+p}, \quad \text { specificity }=\frac{t n}{n}, \quad \text { sensitivity }=\frac{t p}{p} .
$$

The score threshold characterizes a single classifier and its variation in the interval $[0,1]$ defines a family of classifiers, whose performances are summarized by receiver operating characteristic (ROC) curves, using the area under the ROC curve (AUC).

Classifier selection according to Youden test through the maximization of

$$
J=\text { sensitivity }- \text { specificity }+1
$$

A hard decision making process

Our best classical (not quantum!) classifier with diameter, grading, histologic type, multifocality, in situ component, PgR :

AUC (\%)	Accuracy (\%)	Specificity (\%)	Sensitivity (\%)
70.8 (70.3-71.1)	69.8 (69.3-70.2)	$74.8(72.9-75.1)$	$61.0(60.3-61.7)$

reporting the $1^{\text {st }}-3^{\text {rd }}$ interquartile range after 10 ten-fold cross-validations.

A hard decision making process

Our best classical (not quantum!) classifier with diameter, grading, histologic type, multifocality, in situ component, PgR :

AUC (\%)	Accuracy (\%)	Specificity (\%)	Sensitivity (\%)
70.8 (70.3-71.1)	69.8 (69.3-70.2)	$74.8(72.9-75.1)$	$61.0(60.3-61.7)$

reporting the $1^{\text {st }}-3^{\text {rd }}$ interquartile range after 10 ten-fold cross-validations.

A feature selection is implemented for any variables pair in our quantum classifier:

ψ_{2} diameter feature is mapped in ψ_{1} for shaded bars.

Features selection

Maintaining the best features pair (diameter, PgR), we compare two not equivalent scheme for three feature, yielding grading and Ki67:

Summary \& outlook

	AUC (\%)	Accuracy (\%)
Classical (6 features)	$70.8(70.3-71.1)$	$69.8(69.3-70.2)$
Classical (3 features)	$67.4(67.4-67.5)$	$61.7(60.6-62.8)$
Quantum (2 features)	$63.1(62.7-63.3)$	$65.5(65.1-65.8)$
Quantum (3 features)	$64.7(64.1-65.1)$	$69.5(61.8-70.2)$
Quantum (3 features)	$59.5(59.1-59.8)$	$65.3(64.7-65.9)$

- Quantum circuits offer a promising model for complex systems;
- classification performances of our tutorial model still miss a possible clinical application;
- further improvements are related with computational complexity reduction to manage quantum states in higher dimensions.

Thank you!

Thank you!

Questions/Comments?

