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Ω
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n-label set
L = {`1, `2, . . . , `n}
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of outcomes Ω
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D = {x1, . . . , xN}

Ω
s−→ DΩ
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classification system
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Linear/kernel supervised learning in least-squares SVM
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Labeled dataset: yi =

{
+1 if xi ∈ A
−1 if xi ∈ B

Cost function: J (θ) =
∣∣∣∣Mθ(x)− y

∣∣∣∣2
A linear decision function: Mθ(x) = Wθ · x
fails the classification in this case.

Non-linear feature map Ψ(x), e.g.

Ψ(xi) =
(
xi,1, xi,2, x

2
i,1 + x2i,2

)
with Mθ(Ψ) = Wθ · Ψ(x) able to classify, but
involving high computational complexity!
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Let’s label features with xji for i = 1, . . . , N and for patient j = 1, . . . ,M .

Rescale: xji −→
xji

maxjx
j
i

ψ−→

sin
(
π
2x

j
i

)
cos
(
π
2x

j
i

) = ψji ∈ R2 single variable
feature map

For each patient the global feature vector is: Ψj =

N⊗
j=1

ψji ∈ R2N

⊗ ⊗ ⊗
θ

u

v

Ry(θ)u = v

Example: N = 4

Ry(θ) = e−iσyθ ∈ SO(2)

Ry(θ)ψi = (1 cos(θ)− iσy sin(θ))ψi =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
sin(π2xi)
cos(π2xi)

)
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A crash course on spins (aka qubits!)
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Ψ = aψ↑ + bψ↓, ψ↑ =

(
1
0

)
, ψ↓ =

(
0
1

)
, a, b ∈ C

We can act on such a spin state by means of Pauli and identity matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
, 1 =

(
1 0
0 1

)
.

Example: spin flip up projection down projection

σxψ↑ = ψ↓, P↑Ψ = aψ↑, P↓Ψ = bψ↓

Spin interactions

Example: H = Jσz ⊗ σz

Hψ↑⊗ψ↑ = Jψ↑⊗ψ↑
Hψ↓⊗ψ↓ = Jψ↓⊗ψ↓
Hψ↑⊗ψ↓ = −Jψ↑⊗ψ↓

Multiple spins
may interact
subsequently
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Controlled NOT gates let data interact!
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ψ1 ψ2

ψ1

Ry(θ1)

ψ2

Ry(θ2)

CNOT = σx ⊗ P↑ + 1⊗ P↓Classically XOR:

Example:

CNOTψ↓⊗ψ↓ = ψ↓⊗ψ↓, CNOTψ↓⊗ψ↑ = ψ↑⊗ψ↑

In our case: CNOT ψ1 ⊗ ψ2

the interaction of ψ1 depends on the control qubit ψ2.

H = CNOTRy(θ1)⊗Ry(θ2)

Example: binary features x1 = 1 −→ ψ↑

x2 = 0 −→ ψ↓

Hψ↑⊗ψ↓ = CNOT

(
cos(θ1)
sin(θ1)

)
⊗
(
− sin(θ2)
cos(θ2)

)
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Least-squares SVM via measurements

ACAT 2022 Quantum-inspired Machine Learning October 24, 2022 8 / 15

Ψ = ψ1 ⊗ ψ2 feature vector

Ry(θ3)⊗ 1 CNOT Ry(θ1)⊗Ry(θ2) = Uθ

P↑ ⊗ 1 =M measurement

Index j = 1, . . . ,M for the patients sample:

score Mθ(Ψj) = 〈UθΨj ,M UθΨj〉

and minimize the mean squared error cost function:

J (θ) =
1

M

M∑
j=1

(Mθ(Ψj)− yj)2
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Tree tensor network encoding
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ψ1 ψ2ψ1 ψ2

=

isometry CNOT

Ising model ground state: H = −
∑
j

σ(j)z σ(j+1)
z

a ψ↑ + b ψ↓
encoding−→ a ψ↑ ⊗ ψ↑ · · · ⊗ ψ↑ + b ψ↓ ⊗ ψ↓ · · · ⊗ ψ↓



Our case study: breast cancer lymph node metastasis
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Tumour cells Growth factors/Cytokines Extracellular vesicles Lymphatic vessels

Lymphangiogenesis &
Lymphatic vessel remodelling

Dilation of collecting
lymphatic vessels

Lymphangiogenesis & remodelling
prior to tumour cell arrival

Distant organ metastasis
(establishment of metastatic niche)

Primary
tumour Initial lymphatic

vessels

Collecting lymphatic vessels Sentinel
lymph node

Lymph
node

Thoracic
duct

Systemic
circulation

Distant organ

Our dataset:
634 patients with
214 lymph nodes
metastasis

Purpose of the study: detection of lymph
nodes metastasis in a pre-operative stage

Patients’ features:
I age

Tumour features:
I diameter

I grading

I in situ component

I multiplicity

I histologic type

I ER

I PgR

I Ki67

I HER2/neu
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Performance evaluation
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Given the number of negative n and positive p patients, with classifier results
involving true positive tp and true negative tn, we define

accuracy =
tn+ tp

n+ p
, specificity =

tn

n
, sensitivity =

tp

p
.

The score threshold characterizes a single
classifier and its variation in the interval
[0, 1] defines a family of classifiers, whose
performances are summarized by receiver
operating characteristic (ROC) curves, us-
ing the area under the ROC curve (AUC).
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↔

Classifier selection according to Youden test through the maximization of

J = sensitivity − specificity + 1
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A hard decision making process
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Our best classical (not quantum!) classifier with diameter, grading, histologic
type, multifocality, in situ component, PgR:

AUC (%) Accuracy (%) Specificity (%) Sensitivity (%)

70.8 (70.3-71.1) 69.8 (69.3-70.2) 74.8 (72.9-75.1) 61.0 (60.3-61.7)

reporting the 1st-3rd interquartile range after 10 ten-fold cross-validations.

A feature selection is implemented for any variables
pair in our quantum classifier:

ψ1

Ry(θ1)

ψ2

Ry(θ2)

Ry(θ3)

0.30 0.35 0.40 0.45 0.50 0.55 0.60
0

2

4

6

8

AUC

# AUC:
63.3%

diameter feature is mapped in ψ1 for shaded bars.
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Features selection
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Maintaining the best features pair (diameter, PgR), we compare two not
equivalent scheme for three feature, yielding grading and Ki67:

ψ1

Ry(θ1)

ψ2

Ry(θ2)

ψ3

Ry(θ3)

Ry(θ4)

Ry(θ5)

ψ2

Ry(θ1)

ψ1

Ry(θ2)

ψ3

Ry(θ3)

Ry(θ4)

Ry(θ5)

0.40 0.45 0.50 0.55 0.60 0.65
0

2

4
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8

AUC

#

AUC:
65.4%

AUC:
60.0%



Summary & outlook
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AUC (%) Accuracy (%)

Classical (6 features) 70.8 (70.3-71.1) 69.8 (69.3-70.2)

Classical (3 features) 67.4 (67.4-67.5) 61.7 (60.6-62.8)

Quantum (2 features) 63.1 (62.7-63.3) 65.5 (65.1-65.8)

Quantum (3 features) 64.7 (64.1-65.1) 69.5 (61.8-70.2)

Quantum (3 features) 59.5 (59.1-59.8) 65.3 (64.7-65.9)

I Quantum circuits offer a promising model for complex systems;

I classification performances of our tutorial model still miss a possible
clinical application;

I further improvements are related with computational complexity
reduction to manage quantum states in higher dimensions.
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Questions/Comments?
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