Speeding up Madgraph5 aMC@NLO
through CPU vectorization and GPU offloading:
towards a first alpha release

Laurence Field
Stephan Hageboeck

Taylor Childers Stefan Roiser Olivier Mattelaer
Walter Hopkins David Smith Carl Vuosalo
Nathan Nichols Andrea Valassi UCL -
Zenny Wettersten Université % "' :5 WISCONSIN
Argon ne o (ciaetlt_‘;ﬁi‘?al;ﬁ %"%fﬁ sssssssssssssssssssss “MADISON
c\ER”Nj/
N ird

ACAT, Bari, 24th October 2022
https://indico.cern.ch/event/1106990/contributions/4997226

https://indico.cern.ch/event/1106990/contributions/4997226

Motivation: Monte Carlo Event Generators in WLCG computing

« LHC computing needs are predicted to outpace resource growth on HL-LHC timescales
—Need R&D on software to improve efficiency and port it to new resources, such as GPUs at HPC centres

Run 4 extrapolatlons CPU 24

ATLAS Preliminary. 2028 CPU resource needs
MC fast calo si

T L s e e o
T J T T T MC-Full{Sim)

=)
3 B ATLAS Prellmlnary]
% 1 00 CPU resource needs]
s I]
| 802018 estimates: —
E - ¥ MC fast calo sim + standard reco K 1
g | _»_MC fast calo sim + fast reco P S]
§ ool e e EE
=] L ; . e
5 |- — Flat budget model PR -
= - (+20%/year) V ok v
= a0l LA s
g r o
g [e]
20— -

0™"3018 2020 2022 2024 2026 2028 2030 2032

ATLAS computing and software update Year

James Catmore (Oslo/CERN), Alessandra Di Girolama (CERN)

WLCG meeting with LHCC referees, Feb. 2020

LEONARDO

%) siLicH

https://doi.org/10.1007/s41781-021-00055-1

Computing and Software for Big Science (2021) 5:12
https://doi.org/10.1007/541781-021-00055-1

ORIGINAL ARTICLE ")

Challenges in Monte Carlo Event Generator Software
for High-Luminosity LHC

The HSF Physics Event Generator WG - Andrea Valassi' @ - Efe Yazgan®(" - Josh McFayden'*#{ . Simone Amoroso® -
Joshua Bendavid' - Andy Buckley® - Matteo Cacciari’® - Taylor Childers® - Vitaliano Ciulli'® - Rikkert Frederix'" -
Stefano Frixione'? - Francesco Giuli'? - Alexander Grohsjean® - Christian Giitschow'* - Stefan Hoche'® -

Walter Hopkins® - Philip liten'®'” . Dmitri Konstantinov'® - Frank Krauss'® - Qiang Li?° - Leif Lonnblad'" -

Fabio Maltoni?'?? . Michelangelo Mangano' - Zach Marshall® - Olivier Mattelaer®? - Javier Fernandez Menendez?* -
Stephen Mrenna'® - Servesh Muralidharan'? - Tobias Neumann'#?* . Simon Plitzer?* - Stefan Prestel'" -

Stefan Roiser' - Marek Schonherr'? - Holger Schulz'” - Markus Schulz' - Elizabeth Sexton-Kennedy'® -

Frank Siegert?® - Andrzej Si6dmok?’ - Graeme A. Stewart'

Received: 18 May 2020 / Accepted: 2 March 2021 / Published online: 22 May 2021

« MC generators, the essential 15t step in simulation, use ~5%-20% of ATLAS/CMS WLCG CPU budget
—Many ways to speed them up — see the HEP Software Foundation (HSF) Generator WG review paper
—MC generators are ideal candidates to exploit data parallelism in GPUs (SIMT) and in vector CPUs (SIMD)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

A. Valassi

— ACAT, Bari, 24 October 2022

Argonne & (&) Uc'.'ﬂg @

NATIONAL LABORATORY “” '

https://doi.org/10.1007/s41781-021-00055-1
https://indico.cern.ch/event/877840/contributions/3698881/subcontributions/296412
https://doi.org/10.1007/s41781-021-00055-1

Madgraph5 aMC@NLO (MG5aMC)

 One of the workhorses for event generation in ATLAS and CMS! P AN
— RANMAR
%? PUBLISHED FOR SISSA BY) SPRINGER i
o RECEIVED: May 20, 2014
ACCEPTED: June 25, 2014 FORTRAN:
PuUBLISHED: July 17, 2014) MADEVENT
e
The automated computation of tree-level and - ;
. . . . MOMENTA
next-to-leading order differential cross sections, and T
. . . . b
their matching to parton shower simulations = i FORTRAN:
antiproton MATRIX1
J. Alwall,” R. Frederix,” S. Frixione,’ V. Hirschi,® F. Maltoni,? O. Mattelaer,? u” i
H.-S. Shao,® T. Stelzer,” P. Torrielli’ and M. Zaro* v
MATRIX ELEMENTS

https://doi.org/10.1007/JHEP07(2014)079

« MG5aMC production version is in Fortran
— Software outer shell: Madevent (random sampling, integration and event generation + 1/0O, multi-jet merging...)

— Software inner core: Matrix Element (ME) calculation code, automatically generated for each physics process

» Matrix Element calculations take 95%-+ of the CPU time for complex processes (e.g. gg—ttggg)
» And ME calculations are precisely one component that can be “easily” accelerated on GPUs and on vector CPUSs...

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ (IRNE» Univers

https://doi.org/10.1007/JHEP07(2014)079

MG5aMC and the madgraph4gpu project

« madgraph4gpu: speed up Matrix Element calculation in MG5aMC on GPUs and vector CPUs
— Collaboration of theoretical/experimental physicists with software engineers — born in the HSF generator WG
— Extensive details may be found in the vCHEP2021 and ICHEP2022 conference proceedings

EPJ Web of Conferences 251, 03045 (2021) https://doi.org/10.1051/epjconf/202125103045 D PROCEEDINGS
CHEP 2021 s S OF SCIENCE

Design and engineering of a simplified workflow execution PoS (ICHEP2022) 212
for the MG5aMC event generator on GPUs and vector CPUs

Developments in Performance and Portability for
MadGraph5_aMC@NLO
Andrea Valassi'"*, Stefun Roiser'", Olivier Mattelaer?, and Stephan Hageboeck'

!CERN, IT-SC group, Geneva, Switzerland
. S . . . i . H b 7 a F a
3Un|versne thohque de Louvain, Belglum Andrea Valassi,“" Taylor Childers,” Laurence Field,” Stefan Hagebdck,” Walter
Hopkins,” Olivier Mattelaer,” Nathan Nichols,” Stefan Roiser” and David Smith”

https://doi.org/10.1051/epjconf/202125103045 https://doi.org/10.22323/1.414.0212

» Two parallel approaches to reimplement the ME calculation
—(1) “CUDACPP?, our initial single-code CUDA/C++ back-end targeting NVidia GPUs and SIMD on vector CPUs

—(2) Portability Frameworks (PFs: Alpaka, Kokkos, SYCL), later addition supporting many GPUs (and CPUs too0)

» Two types of executables: initially standalone applications, then MadEvent-integrated applications

* In this ACAT2022 presentation | give an overview, and a few new results since ICHEP in July 2022

I UCL /4
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ Universite | :“ @ 4

https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212

GENERIC WORKFLOW

(MULTIEVENT AP) MG5aMC: old and new architecture designs

PSEUDO RANDOM
NUMBERS

iy (1) First we developed the new (CUDACPP/PF) ME engines within standalone applications

PHASE SPACE
SAMPLING

(2) Then we maodified the existing all-Fortran MadEvent into a multi-event framework
and we injected the new (CUDACPP/PF) MEs into it

MOMENTA

In the following | will give performance results from these three applications
MATRIX ELEMENTS

MG5amMC | madgraph4gpu |
MADEVENT (PROD) " ~._MADEVENT (NEW) (2) MADEVENT (GOALY | T, (1) STANDALONE
SINGLE-E\‘/_EN—T"AﬁI I\7IU1;I[—_EVENT API MULTI-EVENT’API MUi:Tl:IiVENT API
=) M E
_______________ 5
FORTRAN: FORTRAN: FORTRAN: CUDA/C++ or PFs:
RANMAR
. APl FROM RANMAR REPLACE RANMAR CURAND
' SINGLE-EVENT “nime FORTRAN MEs BY onssscee i’
FORTRAN: uuuu
MADEVENT TO MULTI-EVENT CUDACPP/PFs
FORTRAN: :> FORTRAN: CUDA/C++ or PFs:
T A— ::) MADEVENT MADEVENT RAMBO
FORTRAN:
Mll-=\TRIX1 FORTRAN: CUDA/C++ or PFs: CUDA/C++ or PFs:
MATRIX1

MEKERNELS

MEKERNELS
W u

MATRIX ELEMENTS

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ (:':Ri s ()

U
¢
d

ANY MC event generator Is a great fit for GPUs and vector CPUS!

» Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw 06

* From a software workflow point of view, these are used in two rather different cases:

NB: MULTI-EVENT API

MIC SAMPLING [Mpur @0 g NPUT MC DECISIONS [Q

ME event generators* Detector simulation (Geant4)

: SAME CALCULATION . . .
(before ME calculation): - Particle/matter interaction

ON DIFFERENT DATA!
- MC integration DIEClE O (when? how?)
(cross sections) W - Particle decays (when?)

»

- MC generation
event sampies T Movomeata
OUTPUT OUTPUT
Event generators*
Lockstep processing Stochastic branching I (after ME calculation):
Good for SIMT/SIMD Bad for SIMT/SIMD_§ - McC unweighting (keep/reject)

Parton showers (PS)
- Fragmentation and decays

)2 I@ 6

@_ UCL 3\
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ WA i &

*NB: the CPU-intensive ME calculation comes
before PS, fragmentation, detector simulation

CUDACPP MESs vaa d PF MEs almaka [kokkos (GYcL.

CUDA

95% common code + a few #ifdef's for CUDA vs C++ Write code once for many CPU/GPU vendors

Designed for NVidia GPUs (so far) and vector CPUs Support NVidia, AMD and Intel GPUs out-of-the-box

e intel

4 |Intel°’AVX512 N2 B AMD VB
NVIDIA. NVIDIA

Designed for vector CPUs (large SIMD speedups) No explicit design for SIMD on CPUs (speedups?)

Full feature support, e.g. tensor cores, streams, graphs Limited feature support

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/

CUDACPP vs. Portability Frameworks — recap

« CUDAPP (our initial implementation) is still where we add new features first
« SYCL and KOKKQOS are now almost at the same level

« ALPAKA is no longer maintained

ME code | Standalone Actively MadEvent | Latest dev

Backend : S . L

generation | application | maintained | application | code base
CUDACPP v v v v v
SYCL v v v v ~v
KOKKOS v v v ~v
ALPAKA
(CUPLA) / 4 x x x

For the moment: we plan to continue development in parallel using both approaches, CUDACPP and PFs
Two goals: not only production releases, but also aim to provide useful feedback to HEP about usability of PFs

o UCL A5
Argonne & () 22 @ s

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022

CUDACPP vs PFs - GPU ME throughputs (standalone application)

Variable GPU-grid size (throughput scan) Fixed GPU-grid size (throughput plateau)
NVIDIA A100 — gg_ttgg gg-ttgg
® svcL 2 e R ®@ ® @ ® 106 WM SYCL _ WEE Kokkos . EEE CUDA . WEE OpenMP
A Kokkos ® l —
_ I CUDA A
%‘Tm 105 Alpaka i é wu
i ' %
= 3 ® <9
57 5
e S o
10*4 = a
tt 16k threads __
(9g_ttgg) reads — 256
TATA T LSRRV
nched

Total Threads Lau

» The performances of SYCL and Kokkos are comparable to direct CUDA

 SYCL and Kokkos run out of the box also on AMD and Intel GPUs
— They also run out of the box on CPUs (performance under investigation)

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs

XE-HPC is an early implementation of the Aurora GPU

n UCL /3
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ W@ @ 9

MadEvent throughputs with CUDA for gg—ttgg (ICHEP2022)

Nvidia V100 GPU, Intel 4216 CPU madevent standalone
ICHEP2022
CUDA grid size 8192 524288
. MEs | ttoT = tMad + tMEs | Nevents/tTOT Nevents /TMEs
88— 1188 .
precision [events/sec] [MEs/sec]
Fortran double 58.3 53.1 1.55E3 (=1.0) ||1.70E3 (=1.0) — —
CUDA double 6.1 0.36| | 1.49E4 (x9.6) ||2.54ES5 (x149)|| 2.51E5 | 4.20E5 (x247)
CUDA float 5.7 0.24| | 1.59E4 (x10.3) | |3.82ES5 (x224)|| 3.98E5 | 8.75E5 (x515)

« ME calculation alone: accelerated by x150/x225 (double/float) on GPU with respect to Fortran on CPU
— (With a GPU grid size of 8k, limited by MadEvent RAM - and could reach x250/x500 with a larger grid size of 524k)

» Overall workflow speedup is only x10 (double/float) - maximum achievable as scalar part was 10% (Amdahl's law)

 Must reduce the scalar MadEvent Fortran overhead (random numbers, sampling algo, I/O, MLM merging...)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

A. Valassi — ACAT, Bari, 24 October 2022

| o
Argonne & () 22@) @ 10

MadEvent/CUDA for gg—ttgg (improved at ACAT2022)

ICHEP2022 madevent standalone
CUDA grid size 8192 524288
_ MEs | 10T = tMad + 'MEs | Nevents/tTOT Nevents / IMEs
88 — 1188 .
precision [sec] [events/sec] |[MEs/sec]
Fortran double 58.3 F5.28+ 53.1 1.55E3 (=1.0) | 1.70E3 (=1.0) — —
CUDA double 6.1 5. 70+ 0.36 | 1.49E4 (x9.6) | 2.54E5 (x149) | 2.51ES | 4.20ES (x247)
CUDA float 5.7 35.44+ 0.24 ‘ 1.59E4 (x10.3) | 3.82E5 (x224) | 3.98ES | 8.75ES5 (x515)

Reduced the overhead from scalar Fortran MadEvent overhead from 10% to 5% of initial Fortran (improved handling of MLM merging)
Maximum allowed overall speedup from Amdahl’s law is now increased from x10 to x20 - which we do achieve

ACAT2022 madevent standalone
CUDA grid size 8192 524288
. MEs | 10T = fMad + IMEs | Nevents/fTOT Nevents/ TMEs
88 1188 . .
precision [sec] [events/sec] [MEs/sec]
Fortran double 1.63E3 (=1.0) | 1.70E3 (=1.0) — —
CUDA double . 3.06E4 (x18.8) | 2.60ES (x152) | 2.62E5 | 4.21E5 (x247)
CUDA float 2.8 2.6+ 0.24 §3.24E4 (x19.9)§ 3.83ES5 (x225) | 3.96E5 | 8.77E5 (x516)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

A. Valassi — ACAT, Bari, 24 October 2022

Argonne & oo () @ 12

More interesting: MadEvent/CUDA for gg—ttggg

madevent standalone
CUDA grid size ACAT2022 8192 16384
_ MEs ITOT = tMad + IMEs Nevents/TTOT Nevents /TMEs
88 11888 precision [sec] [events/sec] [MEs/sec]
Fortran double | 1228.2 gf5.00+ 1223.2 | 7.34E1 (=1.0) | 7.37El (=1.0) — —
CUDA double 19.6 97.44+ 12.1 | 4.61E3 (x63) | 7.44E3 (x100) | 9.10E3 | 9.51E3 (x129)
CUDA float 11.7 96.24+ 5.4 I7.73E3 (xlOS)I 1.66E4 (x224) | 1.68E4 | 2.41E4 (x326)
CUDA | mixed | 16.5 7.0+ 9.6 | 5.45E3 (x74) | 9.43E3 (x128) | 1.10E4 | 1.19E4 (x161)

We are lucky! The more complex the physics process, the lower the relative overhead from the scalar Fortran MadEvent - here only 0.5%
Amdahl’s law limits the overall speedup to x200, and we achieve x100 in the overall speedup!

Relative difference in accuracy
for single and double precision in color algebra

pp>tt-jj

* |n addition:
— Double precision for Feynman diagrams,

— Overall performance is in between single and double precision
* NB: relative importance of color algebra is higher for more complex processes (lucky again!)

— Physics precision ~ E-6 should be OK for production (float everywhere faster but less precise)

0.15 4

10
0.05 4 J\
10-¢ 1077 1073

Y

Probabil

0.00 4

11111111111

~ UCL /&
Argonne & @ wen(B) @ 12

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022

CHEP2022 madevent | standalone M d Eve nt/C+ + for } tE
= I IIIII TTOT — ™™Mad T IMEs Nevems;’[fTOT Nevents;"tMEs a' gg gg
88 21188 precision [sec] [events/sec] [MEs/sec] .
il Bl o A vl st ol Bt [(on a single CPU core)
C++/ssed(128-bit) double 21.1 2.5+ 18.6 | 3.89E3 (x1.8) | 4.41E3 (x1.9) 4.57E3
C++/avx2(256-bit) | double 10.8 52.5+ 8.3 | 7.60E3 (x3.6) | 9.92E3 (x4.3) 1.04E4
Cornioorabiy | doble | 7125l 43 | 11sba s | 180E4 oy | 19084 ME speedup ~ x8 (double) and x16 (float) over scalar Fortran
ot b R Semty| BERo | BE | Our ME engine reaches the maximum theoretical SIMD speedup! *
Crvtrayaseny | fon | 6sdael as | 1ammtoen | 21smes | saes | Overall speedup ~ x6 (double) and x10 (float) over scalar Fortran
C++/512z(512-bit) float 4825+ 2.3 | 1.71E4 (x8.1) | 3.65E4 (x16.1) 4.01E4
Improved since ICHEP: ACAT2022 madevent standalone
« Lower overhead from g —tigg MEs | fTOT = tMad + IMEs | Nevents/tTOT Nevents / tMEs
scalar Madevent, hence precision [sec] [events/sec] [MEs/sec]
higher overall throughput Fortran(scalar) double | 37.3=1.7+35.6 | 2.20E3 (=1.0) | 2.30E3 (=1.0) —
* 10% faster MEs via better C++/none(scalar) double | 37.8 =|1.7\+36.0 | 2.17E3}(x1.0)
color algebra algorithm C++/sse4(128-bit) | double | 19.4 =[1.7|+ 17.8 | 4.22E3|(x1.9)
* (Prototype mixed floating C++/avx2(256-bit) | double 9.5=[1.7|+ 7.8 | 8.63E3|(x3.9
. - . (x3.9)
point brecistort as In SEUDA’ C++/512y(256-bit) | double | 8.9=|1.8+ 7.1 | 9.29E3(x4.2)
speedup only In gg—ttgge) C++/5122(512-bit) | double | 6.1=/1.8/+ 4.3 | 1.35E4
C++/none(scalar) float 36.6 =|1.8|+ 34.9 | 2.24E3}(x1.0)
« This is promising in view of C++/sse4(128-bit) | float | 10.6=|1.7}+ 8.9 | 7.76E3|(x3.6)
the upcoming VPUs with 256 C++/avx2(256-bit) float 5.7=[1.8+ 3.9 | 1.44E4
doubles per vector register! C++/512y(256-bit) | float 53=[1.8}+ 3.6 | 1.54E4
(Estela Suarez’s plenary today) .
C++/512z(512-bit) float 39=(1.8+ 2.1 | 2.10E4)(x9.6

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

https://indico.cern.ch/event/1106990/contributions/5041334/

ME throughput in C++ for gg—ttgg (on all the cores of a CPU)

ggttgg check.exe scalability on "bmk&130" (2x 16-core 2.1GHz Xeon Gold 6130 with 2x HT) for 10 cycles

Level of parallelism {number of 5T jobs)

= o

H .) [=] . .]
§ Mo HT : 2x HT | Overcommit - Mo HT : 2 HT | Cwvercommit
a 0.8 1 : : = : :
u
3 i gg—ttyg ; = i gg—ttgg
15} R -1 . .
g (float) . : (float)
il : i

= 200 A
@ ol —1 . o -+ *
o M I —8— ugttgg-sa-cpp-finl0-none ?E I —— ggttgg-sa-cpp-finl0-none
- . gottgg-sa-cpp-finl0-ssed = . ggttgg-sa-cpp-finl0-ssed
g_ 0.2 - I = ogottgg-sa-cpp-f-inlQd-avx2 E— 100 + I —— qottgg-sa-cpp-f-inl0-avx2
5 | —8— uggttgg-sa-cpp-f-inl0-512y = I =&~ ogttgg-sa-cpp-finl0-512y
E ? ® —8— gottgg-sa-cpp-f-inl0-512z o ? o —~ ogttgg-sa-cpp-f-inl0-512z
ﬁ 0.0 T . T T T T T T T _E 0 T T T T T T
)] 20 40 60 80 100 120 140 160 60 80 100 120 140 160

Level of parallelism (number of 5T johs)

* Previous tables for SIMD speedups on C++ were for a single CPU core

* New at ACAT 2022: large SIMD speedups are also confirmed when all CPU cores are used
— AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node (clock slowdown?)
— Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512)

 Plots prepared using HEP-workloads containers developed in the HEP-score project (see D. Giordano's talk)

— Aggregate MEs throughput from many identical processes using the standalone application

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

A. Valassi — ACAT, Bari, 24 October 2022

Work-In-Progress, future plans, ideas...

« Performance improvements (speed up the Matrix Element calculation in CUDA)
—Smaller kernels (and fewer events per grid): from one-event/all-helicities to one-event/one-helicity per thread
—Smaller kernels: split Feynman diagrams and color algebra
—Move color algebra to tensor cores (e.g. using cublas)

« Performance improvements (speed up the Fortran MadEvent scalar component)
—Parallelize it on the many cores of the CPU (heterogeneous workflow)?
— Further profiling...

« Functional improvements and longer term plans
— Support for NLO QCD processes
—Event-by-event ME reweighting (and derivatives?)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneé N s

Fortran vs C++/CUDA/PFES: (ot yety an apples-to-apples comparison!

MadEvent + CUDA/C++/PFs

(doub|e precision) Cross-sections: same as Fortran

with 2E-14 relative precision* — OK

LHE files: same events as Fortran, each with

- same weight to 7 significant digits*

- same leading color flow (needed for parton showers)
- same helicities (needed for particle decays)

MadEvent + F_o_rtran SOON!
(double precision) (THE GOAL)

* WIP — how much lower precision
for cross-sections and event weights
with single or with ‘mixed’ precision?

Cross-sections: same as Fortran
with 2E-14 relative precision* — OK

TODAY

NB: THE SAME APPLES!

LHE files: same events as Fortran, each with
- same weight to 7 significant digits* — OK

- same leading color flow — not yet

- same helicities — not yet

Implementing the per-event choice of color and helicity is our last main TO-DO before an alpha release: SOON!

UCL /;
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneb uh,qu@ @ 16

Conclusions

The Matrix Element calculation in ANY ME event generator can be efficiently parallelized using SIMD or GPUs

Our reengineering of MG5aMC is close to a first fully functional alpha release for LO QCD processes
— The new ME calculation is integrated in MadEvent, we are mainly missing the per-event choice of colour and helicity

On CPUs, using vectorized C++ we achieve the maximum x8/x16 (double/float) SIMD speedups for MEs alone
— The speedups for the overall workflow are slightly lower due to Amdahl's law, but not much
— Example: our overall speedup is currently x6/x10 for gg—ttgg (on one CPU core)

On GPUs, using CUDA we achieve O(100-1000) speedups for MEs alone
— The speedups may be much lower due to Amdahl's law, but we are improving on that
— Example: our overall speedup is currently x60/x100 (double/float) for gg—ttggg

Floats are x2 faster than doubles in SIMD and data centre GPUs - we are testing their use e.g. in colour algebra

Using SYCL and Kokkos we get similar performances to CUDA and we may also run on AMD or Intel GPUs

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneé N

Acknowledgements

» We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory
for System Evaluation (JLSE) at Argonne National Laboratory. This research used resources of the

Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported
under Contract DE-AC02-06CH11357.

» We gratefully acknowledge the use (under PRACE proposal PRACE-DEV-2022D01-022) of the
JUWELS supercomputer and other computing resources provided and operated by the Jilich
Supercomputing Centre at Forschungszentrum Julich.

» We gratefully acknowledge the use (under ISCRA-C project MG5A100) of computing resources
provided and operated by CINECA.

» We thank the organizers and our mentors at the GPU Hackathon in CSCS Lugano in September 2022.

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneé N s) W)

BACKUP SLIDES

way UCL /g
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneé @"“j(e | B '@ 19

NATIONAL LABORATORY

MEs in MadEvent: CUDA vs SYCL for gg—ttgg

- NB_PAGE_LOOP: 16384
60 M-+ CUDA
' --@-+ SYCL
[
¥ 55
s
::é’s.o-
[@)]
8
S 45-
4.0 -
nevts

« ME throughput only - SYCL comparable to CUDA but somewhat lower

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ N

Some ideas for heterogeneous processing

E 0.5 - gt00256 Nvidia V100 GPU
3] ilver 4216 4-core CP ‘At ;
% s - Silve 6 4-core CPU Throughput variation as a function of
& GPU grid size (#blocks * #threads)
£ 0.4
2 ..
o 0.3 This is the number of events
— processed in parallel in one cycle
_EL 0.2 = ggttgg-sa-cuda-d-inl0 {njobsCPU=1})
g‘ ggttgg-sa-cuda-d-inlD (njobsCPU=2)
_?: 0.1 =~ ggttgg-sa-cuda-d-inld (njobsCPU=4)
= =— ggttgg-sa-cuda-d-inl0 (njobsCPU=8)

O-G 'u' LA | T L | T L L | T T T T T

102 103 104 107 106 107

nblocksGPU * nthreadsGPU

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

» Blue curve: one single CPU process using the GPU
— For gg—ttgg, you need at least ~16k events to reach the throughput plateau

* Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
— Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU
— The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced
— (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ @IRNE»

MadEvent/C++ for gg—ttggg (on a single core)

ACAT2022 madevent standalone
- MEs ITOT = IMad + IMEs Nevents/tTOT Nevents/TMEs

88 1188 precision [sec] [events/sec] [MEs/sec]
Fortran(scalar) double | 813.2=3.7+809.6 | 1.01E2 (=1.0) | 1.01E2 (=1.0) —
C++/none(scalar) double | 986.0=4.3 +981.7 | 8.31E1 (x0.8) | 8.35El (x0.8) 9.82E1
C++/sse4(128-bit) double | 514.7=4.2+510.5| 1.59E2 (x1.6) | 1.61E2 (x1.6) 1.95E2
C++/avx2(256-bit) | double | 231.6 =4.0 +227.6 | 3.54E2 (x3.5) | 3.60E2 (x3.6) 4.41E2
C++/512y(256-bit) | double | 208.6 =3.9 + 204.8 | 3.93E2 (x3.9) | 4.00E2 (x4.0) 4.95E2
C++4/512z(512-bit) | double | 124.6 =4.0 + 120.6 | 6.58E2 (x6.5) | 6.79E2 (x6.7) 8.65E2
C++/none(scalar) float 036.1 =4.3+931.8 | 8.75E1 (x0.9) | 8.79E1 (x0.9) 1.02E2
C++/ssed(128-bit) float 2289 =39+225.0 | 3.58E2 (x3.6) | 3.64E2 (x3.6) 4.30E2
C++/avx2(256-bit) float 114.1 =38+ 1104 | 7.18E2 (x7.2) | 7.43E2 (x7.4) 9.06E2
C++/512y(256-bit) float 104.5 =3.8 + 100.7 34 x7.9 8.14E2 (x8.1) 1.00E3
C++/512z(512-bit) float 61.8=3.8+ 58.0 1.41E3 (x14.1) 1.77E3
C++/none(scalar) mixed | 986.0=4.3+981.6 | 8.31E1 (x0.8) | 8.35E1 (x0.8) 9.98E1
C++/sse4(128-bit) mixed | 500.4=3.9+496.5 | 1.64E2 (x1.6) | 1.65E2 (x1.6) 2.00E2
C++/avx2(256-bit) mixed | 220.5=3.8+216.7 | 3.72E2 (x3.7) | 3.78E2 (x3.8) 4.55E2
C++/512y(256-bit) | mixed | 195.6 =3.7+191.8 | 4.19E2 (x4.2) | 4.27E2 (x4.3) 5.21E2
C++/512z(512-bit) | mixed | 118.5=38+114.7 | 6.92E2 (x6.9) | 7.15E2 (x7.2) 8.97E2

« Lower overhead of scalar MadEvent in gg—ttggg than in gg—ttgg : higher overall throughput speedup x13!
» Mixed floating-point precision (single precision color algebra) is 5-10% better than double

N 73
Argonne @ () e ()
NATIONAL LABORATORY A ; . w:“'

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022

MORE BACKUP SLIDES

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonne -

NATIONAL LABORATORY

|

CERN)Y
4/"
A

Matrix element integration in MadEvent: detalled results (CPU)

G mad (81952 MESs) mad mad sa/brdg
o
T e
E ggttgg [sec] tot = mad + MEs [TOT/sec] [MEs/sec [MEs/sec
5 s . - T
g FORTRARN 41.82 = 3.23 + 38.660 2.12e+83 (= 1.@)
%’ CPP/none 47.78 = 3.56 + 44.22 1.85e+03 (x @.9)
>
2 CPP/ssed 23.84 = 2,97 + 20.07 4.08e+83 (x 1.9)
E CPP/avx2 12.19 = 2.88 + 9.32 8.80e+03 (x 4.2)
@)
0o CPP/512y 11.57 = 2.86 + 8.71 9.41e+83 (x 4.4)
<
= CPP/512z 8.26 = 2.88 + 5.38 1.52e+04 (x 7.2)
3 N
~ TIME Total =
S TIME THROUGHPUT
I= MadEvent (scalar) MEs (parallel) MEs
+ MEs (parallel) THROUGHPUT (within madevent) THRO,\;JSSHPUT

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

MadEvent + MEs

TIME (within madevent)

MadEvent (scalar)

. Valassi — ACAT, Bari, 24 October 2022

(within standalone
test application)

Matrix element integration in MadEvent: detailed results (GPU)

z
na mad mad mad sa/brdg
LLJ
Q/ ___
D pottepp [zec] tot = mad + MEs [TOT/=ec [MEs/sec] [MEs/sec]
o
U 31 1 3 3 3 3 0 3 0
© nevt/grid 8192 8192 8102 8192
AN
< nevt total 98112 98112 098112 256%32%1
O o N R I
=
n FORTRAHN 1286.89 = B£2.74 + 1223.35 7.08le+81 (= 1.8) 7.37e+81 (= 1.8)
g CUDA/8192 77.86 = 64.87 + 12.19 1.17e+83 (x16.7) 7.30e+83 (x168.) 7.48e+03 4—— 8k events.
=) per GPU grid
2 nevt/grid 16384
& 1
nevt tota Sla2=3271
o ggttgg GPU MEs
o —————————————— -y e e eememem e —m—————
— speedup is lower than
> CUDA/max eemumu (higher 9.230:03 4— 16K eventg
"g =======s====== TIME register pressure) ============= per GPU grid
< MadEvent (scalar 2. INCREASE GPU
= () 3. SMALLER GPU

1. REDUCE THIS TO
INCREASE SPEEDUP

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

KERNELS TO
INCREASE SPEEDUP

A. Valassi — ACAT, Bari, 24 October 2022

GRIDS (REDUCE
CPU MEMORY) TO
INCREASE SPEEDUP

| O
Argonne & Ug‘“‘ @ 25

n N

Matrix element integration in MadEvent

Replace Fortran MEs by cudacpp (or PFs) MEs in Madevent (keep the same user interface!)

Linking Fortran and C++ has been easy. As expected, the two main issues have been, instead:
—1. Moving Madevent from single-event to many-event (functional reengineering of the algorithm)
* Now also an active area of performance optimizations (next slides: GPU grid and CPU RAM; CPU time and Amdabhl...)
— 2. Debugging functional issues caused by hidden inputs and outputs, e.g. coming from Fortran common blocks

FORTRAN:
RANMAR

|

FORTRAN:
MADEVENT

}

MOMENTA

MATRIX ELEMENTS

W

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

REENGINEER MADEVENT

| >

ADAPT CUDACPP (and PFs)

SINGLE event MANY events

(momenta) (momenta)
COMMON PURE
BLOCKS FUNCTIONS

(clear inputs
and outputs)

(hidden inputs
and outputs?)

FORTRAN:
RANMAR

}

FORTRAN:
MADEVENT

e]

MOMENTA

CUDA/C++ or PFs:

MEKERNELS

MATRIX ELEMENTS

W

A. Valassi — ACAT, Bari, 24 October 2022

o UCL A5
Argonne & (“) 22@) @ 26

v

Code generation: from many “epochs” to a single evolving “epoch

MADGRAPH

OLD MODEL P';?:é’fE (1) Now using upstream MG5AMC from '_\lEW MODEL
(2020- early 2021) https://github.com/mg5amcnlo ! (since end 2021)

Code generation infrastructure
- Python framework and “cudacpp” plugin
- Fortran, C++, CUDA templates
- Post-generation patches (temporary...)

> (3) re-generate

"epoch” UPSTREAM

Automatically generated code
- Fortran framework (Madevent)
- CUDA/C++ Matrix Elements

(sta rt new INTEGRATE

PF;(]AI::jé:E (1) develop on top of auto-generated code
(2) backport immediately to code generation infrastructure

AUTO-GENERATED
CUDA/C++ CODE

n UCL /3
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneo w @ 27

https://github.com/mg5amcnlo/mg5amcnlo/tree/3.1.1_lo_vectorization

MG5aMC computational anatomy and data parallelism strategy

* In MC generators, the same function is used to compute the Matrix Element for many different events
—ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)
—Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

=
PSEUDO RANDOM Py
g NUMBERS
g 0000000 [\~
© +
121
s PHASE SPACE =
%5 SAMPLING - i
= W
2 MOMENTA + optional event cuts
% \ (will need to repack data once) rB:_l
§ GPU Tlme I 3+B| I
@ SIMT CPU I A1 ‘ A2 ‘ A3 ‘ Ad I Ad
X ELEME S | SIMD R ||
a2 I Sainan [reo [ravoz s meret] |[[o=7]
GPU SIMT (Single Instruction Multiple Threads) CPU SIMD (Single Instruction Multiple Data)
Lockstep: all threads in a warp follow the same branch Lockstep: same op for all data in a vector register
Minimum parallelism: 32 threads in a warp (NVidia) Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

= UCL /%
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ (“ii(Universi &

@ 28

|
ca
d

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Portability Frameworks (PFs) Lkokkosd |[‘>a ka (sycL.

(2) Second line of development: MEs on PFs cudacpp example of compiler directives
o _ _ 540 ri?he cunnzc N\
» PFs allow writing algorithms once and running on many 541 [#ifndef MGONGPU_NSTGHT DEBUG
. . . g . . . 542 gProc::sigmaKin<<<gpublocks, gputhreads>>>(devMomenta.get(), devMEs.get()
architectures with some hardware-specific optimizations 543 |rerse
o CUDA Code Can Only run On NVldla GPUS, Wh||e KOkkOS, ::j #Endgiﬁrnc::sigmaKinqq-ﬂgpuhl_ncks, gputhreads, ntpbMAX+sizeof(float)=>=(devMome
Alpaka, and Sycl[Intel] codes can run on most hardware i N For GPU
checkKLudal cudabevicesyncnronlize 3
* In “cudacpp’, #ifdef directives separate code branches for 548 else
549 Proc::sigmakKin{hstMomenta.get(), hstMEs.get(), nevt);
GPU and CPU code during compilation (but these are very 550 #endif

few: only kernel launching and memory access, not MES)

» With PFs, the algorithm is typically the same, but the Kokkos example of Templating & lambda
compilation occurs once per architecture type o <

° PFS Often use templatlng tO handle data typeS and hardware 325 using member_type = typename Kokkos::TeamPolicy<Kokkos::DefaultExecut

. 326 Kokkos: :TeamPolicy<Kokkos::DefaultExecutionSpace> policy(league_size
configuration and function lambdas or pointers for passing 327 Kokkos::parallel_for(_ func__,policy,
kernels (the cudacpp plugin has many of these, too) 28 KOKKOS_LAEDA(member_type tean member)

270

» PFs still require user to think about “host” vs “device”
Kokkos example of Memory Management

262 Kokkos::Viewsfptypess+,Kokkos: :DefaultExecutionSpace> devMomenta(Kokkos::ViewAllocateWithoutInitializing("devMomenta"),nevt,npar,npd);

263 auto hstMomenta = Kokkos::create mirror_view(devMomenta);

UCL
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ q e é!x @ 29

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/cudacpp/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check_sa.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/CPPProcess.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check.cpp

CUDA/C++: ME code example (complex number scalar/vector)

Formally the same code for three back-ends (cxtype_sv represents three types)

- C++, no SIMD: scalar complex —
- C++, with SIMD: vector complex —

- CUDA: scalar complex — (typedef thrust::complex<fptype> cxtype; // two doubles: RI
:complex<fptype> cxtype; // two doubles: RI
_v { fptype v m_real, m_imag; // RRRRIIII (SOA

typedef std:
class cxtype

__device

void FFV1_@(const Fl[]J // input:
const cxtype_sv F2[], // input:
const cxtype_sv v3[], // input:
const cxtype COUP,

(*vertex) = COUP * - cI * TMP®;
mgDebug(1, _ FUNCTION__);

wavefunctioni[6]
wavefunction2[6]
]

wavefunction3[e

€ H FFV1_0

I. IXXXXX 1. IXXXXX helicity amplitude
(a) 3. rrvi_o || for the yuru vertex
2. FFVIPO.3 Soon to be

1. OXXXXX

1. OXXXXX

cxtype_sv* vertex) // output: amplitude n u automatfcaﬂy generated
{

mgDebug(©, _ FUNCTION _);

const cxtype cI(6., 1.);

const cxtype sv TMPO = (F1[2] * (F2[4] * (v3[2] + V3[5]) + F2[5] * (V3[3] + cI * (v3[4]))) + “+” is the usual sum of two
(F1[3] * (F2[4] * (V3[3] - cI * (v3[4])) + F2[5] * (V3[2] - V3[5])) + (thrust/std) scalar complex,
(F1[4] * (F2[2] * (v3[2] - V3[5]) - F2[3] * (V3[3] + cI * (v3[4]))) + or the user defined sum of

F1[5] * (F2[2] * (-v3[2][+|cT * (va[a])) + F2[3] * (v3[2] + V3[5]))))); two vector complex

inline

cxtype_v operator+(const cxtype v& a, const cxtype v& b)

compiler vector extensions

#endif

return; {
} return cxmake(a.real() + b.real(), a.imag() + b.imag());
b
#ifdef _ clang__
C++ SIMD'QCC/CIang typedef fptype fptype_v _ attribute__ ((ext_vector_type(neppV)}); // RRRR
#else

typedef fptype fptype_v

__attribute__ ((vector_size (neppV*sizeof(fptype)))); // RRRR

A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 13

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ @

NATIONAL LABORATORY

UCL 4

Université §
catholique *
de Louvam

@@ =0

CUDA: Profiling with NVidia NSight Compute — ncu

We regularly profile CUDA with ncu [both one-off studies and on-commit checks]
— Thanks to our mentors at the Sheffield GPU hackathon for getting us started!

We see no evidence of thread divergence [branch efficiency is 100%]

Our AOSOA layout ensures coalesced memory access [requests vs transactions]

We continuously monitor register pressure — decreasing it is one of our future goals
— We plan to split the ME computation into many kernels coordinated by CUDA Graphs

O
d

Pags: Detals
Current 4, 1, Cye : i v SM Frequency: 1. : 7.0 Process:

NO_DIVERGENCE 515 aKn 4, 1, /| z 120 NV 5SHM Frequency: 1 : 7.0 Process:

Example: compare baseline implementation (100% branch efficiency) to a test with artificial divergence

\m A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 14

ey

=
s

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ @

EVEN MORE BACKUP SLIDES

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonne - (:':Nii(

NATIONAL LABORATORY

What is a MC generator? A simplified computational anatomy

Monte Carlo sampling: randomly generate and process
MANY different events (“phase space points”) ‘ 0

This can be parallelized (SIMT/SIMD and multithreading)

For each event: MATRIX
1 PSEUDO\RANDOM ELEMENT
1) NUMBERS GENERATOR
Output: random numbers i (e.g. MG5aMC)
2 > PHASE SPACE
Input: random numbers _ HADRONIZATION
Output: particle 4-momenta + optional event cuts GENERATORS
(e.g. PYTHIA)
3.
Input: particle 4-momenta : ST-I%R\;:E):S
Output: Matrix Element (ME) PHASE SPACE "
CPU BOTTLENECK SAMPLING WEIGHTED EVENTS HADRONISATION
OPTIMISATION {EVT i, W_i} =k AND DECAY
A Ha v
i W £l earfice
“., MONTE CARLO MONTE CARLO i FILTERING
INTEGRATION UNWEIGHTING n ™
CROSS-SECTIONS etc... UNWEIGHTED EVENTS :iii SIMULATION
(NB: Matrix Element is an {EVT i, W_i=1} =
element of the scattering matrix... (GEANT4)

almost no linear algebra herel!)

A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 6

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ @

NATIONAL LABORATORY

UCL /;
Universi!gg_ '\‘\;

catholique %%:3
de Louvain V

@33

Code is auto-generated = Iterative development process

» User chooses process, MG5aMC determines Feynman diagrams and generates code
— Currently Fortran (default), C++, or Python

— The more patrticles in the collision, the more Feynman diagrams and the more lines of code

>—<’< >—<<< >—< >-<<< Process LOC functions function calls

ete > utum 776 8 16

e 3<E oo P gg — ti 839 10 2 g

1082 36 106

qgqg — tig;
el sl aad e gg — tigg 1985 222 786

» Goal: modify code-generating code (add CUDA, improve C++ backend)
— (1) Start simple: bootstrap with e*e—u* i (two diagrams, few lines of C++"cod

—(2,3) Add CUDA and improve C++, port upstream to Python meta-cod

— (4) Generate more complex LHC processes gg— tt, ttg, ttgg — N
“epoch” UPSTREAM

F— PRODUCE (a)

3. FFV2_4_0 \ SAME

AUTO-GENERATED

— Add missing functionality, fix issues, improve performance, iterate
CUDA/C-++ CODE

. IXXXXX 1. IXXXXX 1. IXXXXX

3.rrvie (b)
2. FFV1PO_3

l. OXXXXX 1. OXXXXX

2.FFV2_4_3
1. OXXXXX

(\ﬂ A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VvCHEP — 19 May 2021 7

NS

v UCL /3
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ W@ @ 34

Gridpack to generate
100k gg—ttgg events
(./run.sh 100000 1)

madevent (Fortran + external libraries)

Flame Graph

Python

MATRIX ELEMENT

calculation (Fortran)
|

Function: matrixi_ (78,239 samples, 42.00%)

gg — tt g9 — ttgg g9 — ttggg
madevent 13G 470G 11T
matrixi 3.1G (23%) | 450G (96%) | 11T|(>99%)

(\ﬂ A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs

S

(Mattelaer, Ostrolenk — https.//arxiv.org/abs/2102.00773)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

A. Valassi

A complex outer shell — with a CPU-intensive core: the ME

» To generate unweighted events in MG5aMC: execute a “gridpack”
— Python and bash scripts launching multiple instances of a Fortran application (madevent)
— A complex software infrastructure with many functionalities and a stable user interface

Reset Search

» Overall, the ME calculation is the CPU bottleneck (Fortran routine matrix1)
— Fraction of time spent in ME increases with number of events and process complexity-

vCHEP — 19 May 2021

— ACAT, Bari, 24 October 2022

Argonne & |

NATIONAL LABORATORY

UCL

U iverslté
hol q

bz @) @ o

Standalone CUDA/C++ application VS. MadEvent integration

« Our main focus: the ME calculation in CUDA/C++ (sigmakin kernel/function)
— Design approach: single source code for CUDA and C++ (>90% common code + #ifdef’s)

« Our workhorse: a simplified CUDA/C++ toy framework to feed events to the ME kernel
— All 3 main components on the GPU: random (cuRAND), sampling (RAMBO), ME (sigmakin)
— Fast, same results in GPU/CPU, but not good for production (RAMBO algorithm is inefficient)
— The results | present in this talk come from this framework

cuRAND:
identical random
number sequences
on host (CPU)
and device (GPU),
allowing CUDA/C++
bitwise comparisons

FORTRAN:
RANMAR

FORTRAN:
MADEVENT

« Our WIP: we plan to inject CUDA/C++ ME kernel into MadEvent/gridpack framework
— Fastest way to production — easier than rewriting MadEvent in CUDA/C++
— Validated code/infrastructure, same user interface — discussed with experiments at HSF WG

A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021 9

n UCL /3
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ W@ @ 36

Event-level parallelism in practice — coding and #events

CUDA (GPU) implementation

C++ (CPU) implementation
— For SIMD, event loop must be the innermost loop (e.g. invert helicity and event loops)
— For SIMD, SOA memory layouts in the computational kernel are essential

Easier to code for GPU SIMT than for CPU SIMD: CUDA code was faster to prototype

— For SIMT, event loop is “orthogonal”: one thread = one event (GPU thread ID < event ID)
— For SIMT, SOA memory layouts are beneficial (coalesced access), but not strictly essential

— CUDA: lockstep within each warp (32 threads) + many warps in parallel to fill the GPU
— C++ lockstep within a vector register (2-8 doubles) + multi-threading or multi-processing

256 [l | 256 ~ Do @YU

! e*e—utp — 7E8 MEs/s gg—tt — 5ES MEs/s
14 L) L for 500k MEs in parallel Lol s for 16k MEs in paraﬂef

o - = = o 7 = o v ¥ » =) e » = @ oo
....................

THROUGHPUT
(Matri:_: Elemgnts per seco nd)

128 128 wilsw 'E
e 64 L] . 64 ()]
. 2 | @ wsoeo] * 32 E
Double precision a § Double precision '§
NVidia V100 . & 200000 NVidia V100 . o
(2560 FP64 cores) . (2560 FP64 cores) &
. 2 s %-.

c

<<

1

w

°
a

5 § F §F F|lF|E F & F OE 5 R
¥ 2 2 N ¥ £ & &

-'@",;:,-_,-.-
- I I |

#EVENTS IN PARALLEL per ileralion R pumTresR e R
#Threads Per Block * #Blocks

A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs VCHEP — 19 May 2021

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022

To be efficient, CUDA needs O(10k)-O(1M) events in parallel — much more than C++!

12

Argonne & (&)

NATIONAL LABORATORY

UCL /3

téia
(hlq

W s

CUDA: Host(CPU)-to/from-Device(GPU) data copy has a cost

* In our standalone application (all on GPU): momenta, weights, MEs D-to-H
— Plots below from Nvidia Nsight Systems: 12 iterations with 524k events in each iteration

« Eventually, MadEvent on CPU + MEs on GPU: momenta H-to-D; MEs D-to-H

The time cost of data transfers is relatively high in simple processes

— ME calculation on GPU is fast (e.g. ete—p*p : 0.4ms ME calculation ~ 0.4ms ME copy)
* Note: our ME throughput numbers are (number of MEs) / (time for ME calculation + ME copy)

X (hﬂw- E==1l llllllllllllllllllllaamsmt
cupa o1 1 B GESOERILIRINER) (e
ZOOM (ME calculation ~ ME copy)

siscost (7 S5 5055
CUDA AP gale

00 CudaFree (325,083 ms]

cudaFree

NVTX

eteHutp

» But the time cost of data transfers is negligible in complex processes

— ME calculation on GPU is slow (e.g. gg—ttgg: 1000ms ME calculation >> 0.4ms ME copy)
— We expect that this will not be an issue for typical LHC collision processes

T &:[]odmm[33 Sigmaxin (1 |hsq'\acr|]1

o e e oy gt o ot

eviceSy. . || cudaDeviceSy . | | ciliaBeu

_ZOOM (ME calculation >> ME copy) =
- Seame o BE BB
i e —— R ————

‘\ﬂ A. Valassi — Reengineering Madgraph5_aMC@NLO for GPUs and vector CPUs

i VCHEP — 19 May 2021 15
7/

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs

UCL
A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ Univers 'e. @ 38

NATIONAL LABORATORY ‘ “‘ "1

CPU throughput results (2)
Double, C++ — Scalar vs SIMD

« SIMD: excellent speedup from vectorization
— NB: only measuring the parallel calculation
— Lower overall speedup (Amdahl’s law...)

» Best throughput: AVX512 limited to 256-bit width

— x3.7 over scalar C++ (vs x4 theoretical maximum)
» Estimate a x3.3 speedup over scalar Fortran

— Thanks to Sebastien Ponce for the suggestion!

» Disappointing: AVX512 with 512-bit width
— Slower than AVX2, why? Slower clock, what else?
— Can be improved? x8 theoretical maximum...

Implementation
(e*e—p)

MEs / second
Double

1-core MadEvent Fortran
scalar

1-core Standalone C++
scalar

1.50E6
(x1.15)

1-core Standalone C++
128-bit SSE4.2
(x2 doubles)

1-core Standalone C++
256-bit AVX2

(x4 doubles)

1-core Standalone C++
“256-bit” AVX512
(x4 doubles)

#Symbolsin.0 | ssp42 | AvX2 | AVX512 | AVX512
Build type (xmm) | (ymm) | (ymm) | (zmm)
Scalar 614 0 0 0
SSE4.2 3274 0 0 0
AvX2 0 2746 0 0
256-bit AVX512 0 2572 0
512-bit AVX512 0 1127 | 205 2045

A. Valassi — Reengineering Madgraph5 aMC@NLO for GPUs and vector CPUs

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi

1-core Standalone C++
512-bit AVX512
(x8 doubles)

Degree of vectorization checked by disassembling (objdump)
Custom categorization of symbols

VCHEP — 19 May 2021

Ly Afew AVX512VL symbols yield a 7% improvement over pure AVX2

— ACAT, Bari, 24 October 2022

17

Argonne & (&)

NATIONAL LABORATORY

UCL 4

Univer: s!éi
ca(holq e

OLVEES

A complex and heterogeneous problem

e fiod Statcﬁst;oson, ttbar,
iets, A\~ !
ogail) -k +jets..-
o N\{ Otroé btt\/ multi-iet, gamma
single top, 7

MC Physics Event Generator Software:
the application

Research in Theoreticl Physic
the foundation

» Software (and theory) diversity is good for physics
— It provides cross-checks and healthy competition

» But it complicates the definition of an R&D strategy
—Many software packages to optimize (and maintain!)
— Prioritization (“profiling”): is there a CPU “hotspot™?

https://doi.org/10.5281/zenod0.4028834

A. Valassi — MC generators challenges and strategy towards HL-LHC LHCC - 01 Sep 2020
Z

v UCL /3
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ W@ @ 40

Louvain

https://doi.org/10.5281/zenodo.4028834

Issue #2 (no input data)
Data-parallel paradigms Pseudo-random numbers

Uniform distribution in [0,1]

(GPUs and vectorization) S i e
0000000

Generators lend themselves naturally "”""

to exploiting event-level parallelism Phase space sampling

via data-parallel paradigms™*

_ . : For each event i, map 7: to physical phase space %; = H(7)
SPMD: Single Program Multiple The resulting %; are distributed according to a known p.d.f. g(¥)
Data (GPU accelerators) Compute the value of g(%;)

- SIMD: Single Instruction Multiple |||||”|

Data (CPU vectorization: AVX...)

Matrix element* calculation

- The computation a HV intensive For each event i, compute the differential cross-section f(;)
Compute the weight w;=f (%;)/g(%;)

part, the matrix element f(x;), is
the same function for all events |

(in a given category of events) Monte Carlo integration Monte Carlo unweighting

- Unlike detector simulation (where) . Heventi d e
. P or each event i, draw r; in |U,
if/then branches are frequent and Average of weights [= 5,2, w; Acceptif r, < w, /w, .., reject otherwise
lead to thread divergence on GPUs) | — Output: I (estimator of [x dx) —> Output: N,,,,, unweighted events

Potential interest of GPUs *Note for software engineers: these calculations do involve some
- Faster (cheaper?) than on CPUs linear algebra, but “matrix element” does not refer to that! Here we

- Exploit GPU-based HPCs GPUS compute one “matrix element” in the S-matrix (scattering matrix)

MC on ot s"de for the transition from the initial state to the final state
ne
or -5
V\”P f WG talk) **This simple event-level parallelism can also be used as the basis
ne _ : . ; .
(p1al‘1 for task-parallel approaches (multi-threading or multi-processing)

https://doi.org/10.5281/zenod0.4028834

A. Valassi — MC generators challenges and strategy towards HL-LHC LHCC — 01 Sep 2020

UCL
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi — ACAT, Bari, 24 October 2022 Argonneﬁ @ ;.h&:'i‘a @

NATIONAL LABORATORY

https://doi.org/10.5281/zenodo.4028834

