
Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 1

Speeding up Madgraph5_aMC@NLO
through CPU vectorization and GPU offloading:

towards a first alpha release

ACAT, Bari, 24th October 2022

https://indico.cern.ch/event/1106990/contributions/4997226

Laurence Field

Stephan Hageboeck

Stefan Roiser

David Smith

Andrea Valassi

Zenny Wettersten

Olivier MattelaerTaylor Childers

Walter Hopkins

Nathan Nichols

Carl Vuosalo

https://indico.cern.ch/event/1106990/contributions/4997226

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 2

Motivation: Monte Carlo Event Generators in WLCG computing

• LHC computing needs are predicted to outpace resource growth on HL-LHC timescales

– Need R&D on software to improve efficiency and port it to new resources, such as GPUs at HPC centres

• MC generators, the essential 1st step in simulation, use ~5%-20% of ATLAS/CMS WLCG CPU budget

– Many ways to speed them up – see the HEP Software Foundation (HSF) Generator WG review paper

– MC generators are ideal candidates to exploit data parallelism in GPUs (SIMT) and in vector CPUs (SIMD)

WLCG meeting with LHCC referees, Feb. 2020

https://doi.org/10.1007/s41781-021-00055-1

https://doi.org/10.1007/s41781-021-00055-1
https://indico.cern.ch/event/877840/contributions/3698881/subcontributions/296412
https://doi.org/10.1007/s41781-021-00055-1

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 3

Madgraph5_aMC@NLO (MG5aMC)

• One of the workhorses for event generation in ATLAS and CMS!

• MG5aMC production version is in Fortran

– Software outer shell: Madevent (random sampling, integration and event generation + I/O, multi-jet merging...)

– Software inner core: Matrix Element (ME) calculation code, automatically generated for each physics process

• Matrix Element calculations take 95%+ of the CPU time for complex processes (e.g. gg→t ҧtggg)

• And ME calculations are precisely one component that can be “easily” accelerated on GPUs and on vector CPUs...

https://doi.org/10.1007/JHEP07(2014)079

https://doi.org/10.1007/JHEP07(2014)079

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 4

MG5aMC and the madgraph4gpu project

• madgraph4gpu: speed up Matrix Element calculation in MG5aMC on GPUs and vector CPUs
– Collaboration of theoretical/experimental physicists with software engineers – born in the HSF generator WG

– Extensive details may be found in the vCHEP2021 and ICHEP2022 conference proceedings

• Two parallel approaches to reimplement the ME calculation
– (1) “CUDACPP”, our initial single-code CUDA/C++ back-end targeting NVidia GPUs and SIMD on vector CPUs

– (2) Portability Frameworks (PFs: Alpaka, Kokkos, SYCL), later addition supporting many GPUs (and CPUs too)

• Two types of executables: initially standalone applications, then MadEvent-integrated applications

• In this ACAT2022 presentation I give an overview, and a few new results since ICHEP in July 2022

https://doi.org/10.1051/epjconf/202125103045 https://doi.org/10.22323/1.414.0212

PoS(ICHEP2022)212

https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212
https://doi.org/10.1051/epjconf/202125103045
https://doi.org/10.22323/1.414.0212

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 5

(2) MADEVENT (GOAL)

MULTI-EVENT API
MADEVENT (PROD)

SINGLE-EVENT API

MADEVENT (NEW)

MULTI-EVENT API

FORTRAN:

RANMAR

FORTRAN:

MADEVENT

FORTRAN:

MATRIX1

FORTRAN:

RANMAR

FORTRAN:

MADEVENT

CUDA/C++ or PFs:

MEKERNELS

REPLACE

FORTRAN MEs BY

CUDACPP/PFs

API FROM

SINGLE-EVENT

TO MULTI-EVENT

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MATRIX ELEMENTS

MOMENTA

GENERIC WORKFLOW

(MULTI-EVENT API) MG5aMC: old and new architecture designs

(1) First we developed the new (CUDACPP/PF) ME engines within standalone applications

(2) Then we modified the existing all-Fortran MadEvent into a multi-event framework

and we injected the new (CUDACPP/PF) MEs into it

MG5aMC madgraph4gpu

(1) STANDALONE

MULTI-EVENT API

CUDA/C++ or PFs:

cuRAND

CUDA/C++ or PFs:

RAMBO

CUDA/C++ or PFs:

MEKERNELS

In the following I will give performance results from these three applications

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 6

ANY MC event generator is a great fit for GPUs and vector CPUs!

• Monte Carlo methods are based on drawing (pseudo-)random numbers: a dice throw

• From a software workflow point of view, these are used in two rather different cases:

MC SAMPLING

ME event generators*

(before ME calculation):

- MC integration

(cross sections)

- MC generation

(event samples)

*NB: the CPU-intensive ME calculation comes

before PS, fragmentation, detector simulation

SAME CALCULATION

ON DIFFERENT DATA!

INPUT

OUTPUT

Lockstep processing

Good for SIMT/SIMD

MC DECISIONS

Detector simulation (Geant4)

- Particle/matter interaction

(when? how?)

- Particle decays (when?)

Event generators*

(after ME calculation):

- MC unweighting (keep/reject)

Parton showers (PS)

- Fragmentation and decays

DIFFERENT CALCULATIONS

ON DIFFERENT DATA!

DECISION

INPUT

OUTPUT

Stochastic branching

Bad for SIMT/SIMD

NB: MULTI-EVENT API

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 7

PF MEs

• Write code once for many CPU/GPU vendors

• Support NVidia, AMD and Intel GPUs out-of-the-box

• No explicit design for SIMD on CPUs (speedups?)

• Limited feature support

CUDACPP MEs

• 95% common code + a few #ifdef's for CUDA vs C++

• Designed for NVidia GPUs (so far) and vector CPUs

• Designed for vector CPUs (large SIMD speedups)

• Full feature support, e.g. tensor cores, streams, graphs

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 8

CUDACPP vs. Portability Frameworks – recap

• CUDAPP (our initial implementation) is still where we add new features first

• SYCL and KOKKOS are now almost at the same level

• ALPAKA is no longer maintained

For the moment: we plan to continue development in parallel using both approaches, CUDACPP and PFs

Two goals: not only production releases, but also aim to provide useful feedback to HEP about usability of PFs

Backend
ME code

generation

Standalone

application

Actively

maintained

MadEvent

application

Latest dev

code base

CUDACPP ✓ ✓ ✓ ✓ ✓

SYCL ✓ ✓ ✓ ✓ ~ ✓

KOKKOS ✓ ✓ ✓ WIP ~ ✓

ALPAKA

(CUPLA)
✓ ✓

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 9

CUDACPP vs PFs - GPU ME throughputs (standalone application)

• The performances of SYCL and Kokkos are comparable to direct CUDA

• SYCL and Kokkos run out of the box also on AMD and Intel GPUs

– They also run out of the box on CPUs (performance under investigation)

Xe-HP is a software development vehicle for functional testing only - currently used at Argonne and other customer sites to prepare their code for future Intel data centre GPUs

XE-HPC is an early implementation of the Aurora GPU

INTEL NVIDIAAMD

(gg_ttgg) 16k

Fixed GPU-grid size (throughput plateau)Variable GPU-grid size (throughput scan)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 10

ICHEP2022

MadEvent throughputs with CUDA for gg→t ҧtgg (ICHEP2022)

• ME calculation alone: accelerated by x150/x225 (double/float) on GPU with respect to Fortran on CPU

– (With a GPU grid size of 8k, limited by MadEvent RAM - and could reach x250/x500 with a larger grid size of 524k)

• Overall workflow speedup is only x10 (double/float) - maximum achievable as scalar part was 10% (Amdahl's law)

• Must reduce the scalar MadEvent Fortran overhead (random numbers, sampling algo, I/O, MLM merging...)

Nvidia V100 GPU, Intel 4216 CPU

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 11

MadEvent/CUDA for gg→t ҧtgg (improved at ACAT2022)

Reduced the overhead from scalar Fortran MadEvent overhead from 10% to 5% of initial Fortran (improved handling of MLM merging)

Maximum allowed overall speedup from Amdahl’s law is now increased from x10 to x20 - which we do achieve

ICHEP2022

ACAT2022

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 12

More interesting: MadEvent/CUDA for gg→t ҧtggg

• In addition: prototype a “mixed” floating point precision
– Double precision for Feynman diagrams, single precision for the “color algebra”

– Overall performance is in between single and double precision
• NB: relative importance of color algebra is higher for more complex processes (lucky again!)

– Physics precision ~ E-6 should be OK for production (float everywhere faster but less precise)

ACAT2022

We are lucky! The more complex the physics process, the lower the relative overhead from the scalar Fortran MadEvent - here only 0.5%

Amdahl’s law limits the overall speedup to x200, and we achieve x100 in the overall speedup!

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 13

MadEvent/C++ for gg→t ҧtgg
(on a single CPU core)

ME speedup ~ x8 (double) and x16 (float) over scalar Fortran

Our ME engine reaches the maximum theoretical SIMD speedup! *

Overall speedup ~ x6 (double) and x10 (float) over scalar Fortran

ACAT2022Improved since ICHEP:

• Lower overhead from

scalar Madevent, hence

higher overall throughput

• 10% faster MEs via better

color algebra algorithm

• (Prototype mixed floating

point precision as in CUDA,

speedup only in gg→t ҧtggg)

ICHEP2022

* This is promising in view of

the upcoming VPUs with 256

doubles per vector register!

(Estela Suarez’s plenary today)

https://indico.cern.ch/event/1106990/contributions/5041334/

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 14

gg→𝒕 ҧ𝒕gg

(float)

gg→𝒕 ҧ𝒕gg

(float)

ME throughput in C++ for gg→t ҧtgg (on all the cores of a CPU)

• Previous tables for SIMD speedups on C++ were for a single CPU core

• New at ACAT 2022: large SIMD speedups are also confirmed when all CPU cores are used
– AVX512/zmm speedup of x16 over no-SIMD for a single core slightly decreases to ~x12 on a full node (clock slowdown?)

– Overall speedup on 32 physical cores (over no-SIMD on 1 core) is around 280 (maximum would be 16x32=512)

• Plots prepared using HEP-workloads containers developed in the HEP-score project (see D. Giordano's talk)
– Aggregate MEs throughput from many identical processes using the standalone application

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 15

Work-In-Progress, future plans, ideas...

• Performance improvements (speed up the Matrix Element calculation in CUDA)

– Smaller kernels (and fewer events per grid): from one-event/all-helicities to one-event/one-helicity per thread

– Smaller kernels: split Feynman diagrams and color algebra

– Move color algebra to tensor cores (e.g. using cublas)

• Performance improvements (speed up the Fortran MadEvent scalar component)

– Parallelize it on the many cores of the CPU (heterogeneous workflow)?

– Further profiling...

• Functional improvements and longer term plans

– Support for NLO QCD processes

– Event-by-event ME reweighting (and derivatives?)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 16

Fortran vs C++/CUDA/PFs: (not yet) an apples-to-apples comparison!

MadEvent + Fortran

(double precision)

Cross-sections: same as Fortran

with 2E-14 relative precision* – OK

LHE files: same events as Fortran, each with

- same weight to 7 significant digits*

- same leading color flow (needed for parton showers)

- same helicities (needed for particle decays)

SOON!
(THE GOAL)

TODAY

MadEvent + CUDA/C++/PFs

(double precision)

Cross-sections: same as Fortran

with 2E-14 relative precision* – OK

LHE files: same events as Fortran, each with

- same weight to 7 significant digits* – OK

- same leading color flow – not yet

- same helicities – not yet

Implementing the per-event choice of color and helicity is our last main TO-DO before an alpha release: SOON!

NB: THE SAME APPLES!

* WIP – how much lower precision

for cross-sections and event weights

with single or with ‘mixed’ precision?

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 17

Conclusions

• The Matrix Element calculation in ANY ME event generator can be efficiently parallelized using SIMD or GPUs

• Our reengineering of MG5aMC is close to a first fully functional alpha release for LO QCD processes

– The new ME calculation is integrated in MadEvent, we are mainly missing the per-event choice of colour and helicity

• On CPUs, using vectorized C++ we achieve the maximum x8/x16 (double/float) SIMD speedups for MEs alone

– The speedups for the overall workflow are slightly lower due to Amdahl's law, but not much

– Example: our overall speedup is currently x6/x10 for gg→t ҧtgg (on one CPU core)

• On GPUs, using CUDA we achieve O(100-1000) speedups for MEs alone

– The speedups may be much lower due to Amdahl's law, but we are improving on that

– Example: our overall speedup is currently x60/x100 (double/float) for gg→t ҧtggg

• Floats are x2 faster than doubles in SIMD and data centre GPUs - we are testing their use e.g. in colour algebra

• Using SYCL and Kokkos we get similar performances to CUDA and we may also run on AMD or Intel GPUs

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 18

Acknowledgements

• We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory

for System Evaluation (JLSE) at Argonne National Laboratory. This research used resources of the

Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported

under Contract DE-AC02-06CH11357.

• We gratefully acknowledge the use (under PRACE proposal PRACE-DEV-2022D01-022) of the

JUWELS supercomputer and other computing resources provided and operated by the Jülich

Supercomputing Centre at Forschungszentrum Jülich.

• We gratefully acknowledge the use (under ISCRA-C project MG5A100) of computing resources

provided and operated by CINECA.

• We thank the organizers and our mentors at the GPU Hackathon in CSCS Lugano in September 2022.

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 19

BACKUP SLIDES

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 20

MEs in MadEvent: CUDA vs SYCL for gg→t ҧtgg

• ME throughput only - SYCL comparable to CUDA but somewhat lower

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 21

Some ideas for heterogeneous processing

To further reduce the relative overhead of the scalar Fortran MadEvent - parallelize it on many CPU cores?

• Blue curve: one single CPU process using the GPU
– For gg→𝑡 ҧ𝑡gg, you need at least ~16k events to reach the throughput plateau

• Yellow, Green, Red curves: 2, 4, 8 CPU processes using the GPU at the same time
– Fewer events in each GPU grid are needed to reach the plateau if several CPU processes use the GPU

– The total Fortran RAM would remain the same, but the CPU time in the Fortran overhead would be reduced

– (Why total throughput increases beyond the nCPU=1 plateau is not understood yet!...)

Throughput variation as a function of

GPU grid size (#blocks * #threads)

This is the number of events

processed in parallel in one cycle

Nvidia V100 GPU

Silver 4216 4-core CPU

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 22

MadEvent/C++ for gg→t ҧtggg (on a single core)

• Lower overhead of scalar MadEvent in gg→t ҧtggg than in gg→t ҧtgg : higher overall throughput speedup x13!

• Mixed floating-point precision (single precision color algebra) is 5-10% better than double

ACAT2022

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 23

MORE BACKUP SLIDES

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 24

Matrix element integration in MadEvent: detailed results (CPU)

TIME Total =

MadEvent (scalar)

+ MEs (parallel)

TIME

MEs (parallel)

TIME

MadEvent (scalar)

THROUGHPUT

MadEvent + MEs

(within madevent)

THROUGHPUT

MEs

(within madevent)
THROUGHPUT

MEs

(within standalone

test application)

In
te

l
G

o
ld

 6
1
4
8
 C

P
U

 (
J
u
w

e
ls

 C
lu

s
te

r
H

P
C

)

(81952 MEs)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 25

8k events

per GPU grid

16k events

per GPU grid

2. INCREASE GPU

GRIDS (REDUCE

CPU MEMORY) TO

INCREASE SPEEDUP

Matrix element integration in MadEvent: detailed results (GPU)

TIME

MadEvent (scalar)

1. REDUCE THIS TO

INCREASE SPEEDUP

ggttgg GPU MEs

speedup is lower than

eemumu (higher

register pressure)

3. SMALLER GPU

KERNELS TO

INCREASE SPEEDUP

N
V

id
ia

 V
1
0
0

 G
P

U
 +

 I
n
te

l
S

ilv
e
r

4
2
1
6
 C

P
U

 (
C

E
R

N
)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 26

Matrix element integration in MadEvent

Replace Fortran MEs by cudacpp (or PFs) MEs in Madevent (keep the same user interface!)

Linking Fortran and C++ has been easy. As expected, the two main issues have been, instead:
– 1. Moving Madevent from single-event to many-event (functional reengineering of the algorithm)

• Now also an active area of performance optimizations (next slides: GPU grid and CPU RAM; CPU time and Amdahl...)

– 2. Debugging functional issues caused by hidden inputs and outputs, e.g. coming from Fortran common blocks

MANY events

(momenta)

SINGLE event

(momenta)

COMMON

BLOCKS

(hidden inputs

and outputs?)

PURE

FUNCTIONS

(clear inputs

and outputs)

REENGINEER MADEVENT

ADAPT CUDACPP (and PFs)

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 27

Code generation: from many “epochs” to a single evolving “epoch”

Code generation infrastructure
- Python framework and “cudacpp” plugin

- Fortran, C++, CUDA templates

- Post-generation patches (temporary...)

Automatically generated code
- Fortran framework (Madevent)

- CUDA/C++ Matrix Elements

(1) develop on top of auto-generated code

(2) backport immediately to code generation infrastructure

(3) re-generate

NEW MODEL

(since end 2021)
OLD MODEL

(2020- early 2021)
Now using upstream MG5AMC from

https://github.com/mg5amcnlo !

https://github.com/mg5amcnlo/mg5amcnlo/tree/3.1.1_lo_vectorization

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 28

MG5aMC computational anatomy and data parallelism strategy

• In MC generators, the same function is used to compute the Matrix Element for many different events

– ANY matrix element generator is a good fit for lockstep processing on GPUs (SIMT) and vector CPUs (SIMD)

– Data parallelism strategy in madgraph4gpu is event-level parallelism (many events = many phase space points)

GPU SIMT (Single Instruction Multiple Threads)

Lockstep: all threads in a warp follow the same branch

Minimum parallelism: 32 threads in a warp (NVidia)

CPU SIMD (Single Instruction Multiple Data)

Lockstep: same op for all data in a vector register

Minimum parallelism: 2 to 16 (SSE/AVX2/AVX512...)

GPU

SIMT
CPU

SIMD

S
e
e
 t
h
e
 N

V
id

ia
 V

o
lt
a
 w

h
it
e
p
a
p
e

r

PSEUDO RANDOM
NUMBERS

PHASE SPACE
SAMPLING

MATRIX ELEMENT
CALCULATION

MATRIX ELEMENTS

MOMENTA + optional event cuts

(will need to repack data once)

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 29

Portability Frameworks (PFs)

(2) Second line of development: MEs on PFs

• PFs allow writing algorithms once and running on many

architectures with some hardware-specific optimizations

• CUDA code can only run on NVidia GPUs, while Kokkos,

Alpaka, and Sycl[Intel] codes can run on most hardware

• In “cudacpp”, #ifdef directives separate code branches for

GPU and CPU code during compilation (but these are very

few: only kernel launching and memory access, not MEs)

• With PFs, the algorithm is typically the same, but the

compilation occurs once per architecture type

• PFs often use templating to handle data types and hardware

configuration and function lambdas or pointers for passing

kernels (the cudacpp plugin has many of these, too)

• PFs still require user to think about “host” vs “device”

“cudacpp” example of compiler directives

Kokkos example of Templating & lambda

Kokkos example of Memory Management

For GPU

For CPU

https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/
https://github.com/intel/llvm/blob/sycl/sycl/doc/GetStartedGuide.md
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/cudacpp/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check_sa.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/CPPProcess.cc
https://github.com/madgraph5/madgraph4gpu/blob/br_golden_epochX4/epochX/kokkos/ee_mumu/SubProcesses/P1_Sigma_sm_epem_mupmum/check.cpp

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 30

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 31

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 32

EVEN MORE BACKUP SLIDES

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 33

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 34

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 35

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 36

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 37

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 38

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 39

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 40

h
tt

p
s
:/
/d

o
i.
o

rg
/1

0
.5

2
8

1
/z

e
n

o
d
o

.4
0
2

8
8

3
4

https://doi.org/10.5281/zenodo.4028834

Speeding up Madgraph5_aMC@NLO through CPU vectorization and GPUs A. Valassi – ACAT, Bari, 24 October 2022 41

h
tt

p
s
:/
/d

o
i.
o

rg
/1

0
.5

2
8

1
/z

e
n

o
d
o

.4
0
2

8
8

3
4

https://doi.org/10.5281/zenodo.4028834

