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Introduction - Overview

− Accurate theoretical predictions are needed in view of improvements in the
technology of high energy physics experiments.

− Higher order corrections are required for accurate theoretical predictions of the
cross-section for particle interactions.

− The Feynman diagrammatic approach is commonly used to address higher order
corrections, and Feynman loop integrals arise in the calculations.

− Loop integrals may suffer from integrand singularities or irregularities at the
boundaries and/or in the interior of the integration domain (for physical kinematics).

−We implemented iterated integration numerically using one- or low-dimensional

adaptive integration algorithms in subsequent coordinate directions, enabling intensive

subdivision in the vicinity of singularities.
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Introduction - Overview

− To handle a singularity in the domain interior, we add a term (−i%) in the
denominator, and perform a nonlinear extrapolation (as %→ 0) to a sequence of
integrals obtained for a (geometrically) decreasing sequence of %.

− UV singularities are treated by dimensional regularization, where the space-time
dimension ν = 4 is replaced by ν = 4− 2ε for a sequence of ε values, and a linear
extrapolation is applied as ε→ 0.

− Presence of both types of singularities warrants a double extrapolation.

− The code is further multi-threaded to run in a shared memory environment. We will
demonstrate the combined methods for sample diagrams.
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Loop integral - Representation

L-loop integral with N internal lines

I = Γ(N −
νL
2

) (−1)N
∫
CN

N∏
r=1

dxr δ(1−
∑

xr ) U−ν/2(V − i%)νL/2−N

= Γ(N −
νL
2

) (−1)N
∫
SN−1

N−1∏
r=1

dxr U−ν/2(V − i%)νL/2−N

where V = M2 −W/U, M2 =
∑

r m2
r xr ;

U and W are polynomials determined by the topology of the corresponding diagram
and physical parameters; ν = 4− 2ε is the space-time dimension;

CN = the N-dimensional unit hypercube; Sd = {x ∈ Cd |
∑d

j=1 xj ≤ 1} is the

d-dimensional unit simplex.
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Asymptotics

Asymptotic expansion (as ε→ 0)

I = I(ε) ∼
∑
k≥κ

Ck ε
k

κ = −2 for the cases considered.

I(ε) ∼ C−2/ε
2 + C−1/ε+ C0 + . . .
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Sample diagrams

(a) (b) (c)

Figure: Sample diagrams (a) Lemon, N = 4; (b) Magdeburg, N = 5; (c) Graph
2116, N = 4 [7]
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Specifications [9]

Lemon, Graph 2116

U = x12x34 + x1x2, W = s (x4(x1x2 + x1x3 + x2x3))
xk`...n = xk + x` + . . .+ xn
Cases:
m1 = m2 = m3 = m4 = 1 (lemon1111)
Graph 2116 (Z ,W ,W , χ): In units of MH = 1, MW = 0.64308 and MZ = 0.7295008,
Mχ = MW .

Magdeburg

U = x12x34 + x1234x5, W = s (x1x2x34 + x3x4x12 + x13x24x5)

Case: m1 = m2 = m3 = m4 = m5 = 1
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Methods: Automatic Integration

Black-box approach to produce (as outputs) an approximation Q(f ) to an integral

If =

∫
D

f (~x) d~x

and an error estimate E f of the actual error Ef = |Qf − If |, in order to satisfy an
accuracy requirement of the form

|Qf − If | ≤ E f ≤ max { ta , tr |If | },

where the integrand function f , region D and (absolute/relative) error tolerances ta and

tr , respectively, are specified as part of the input.
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Methods: Iterated Automatic Adaptive Integration
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Methods: Automatic Adaptive Integration

Applied in consecutive coordinate directions (using Quadpack DQAGE, and DQAGSE
(DQAGE strategy + extrapolation) [11, 3, 5]:

Evaluate initial region and update results
Initialize priority queue with initial region
while (evaluation limit not reached and

estimated error too large)
Retrieve region from priority queue
Split region into subregions
Evaluate new subregions and update results
Insert new subregions into priority queue

Figure: Adaptive Integration Meta-Algorithm
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Methods: Iterated Automatic Adaptive Integration
Methods: Double Extrapolation

Methods: Iterated Parallel Adaptive Integration

− Integration over a finite d-dimensional product region,

I =

∫ β1

α1

dx1

∫ β2

α2

dx2 . . .

∫ βd

αd

dxd f (x1, x2, . . . , xd ),

− The limits of integration may in general be functions, αj = αj (x1, x2, . . . , xj−1) and
βj = βj (x1, x2, . . . , xj−1).
−We can integrate over the interval [αj , βj ] with a 1D adaptive integration code.
− If an interval [a, b] arises in the subdivision of [αj , βj ] for 1 ≤ j < d , then the local
integral approximation over [a, b] is of the form

∫ b

a
dxj F (c1, . . . , cj−1, xj ) ≈

K∑
k=1

wk F (c1, . . . , cj−1, x (k)),

where wk and x (k), 1 ≤ k ≤ K , are the weights and abscissae of the local rule scaled

to the interval [a, b] and applied in the xj -direction.
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Methods: Iterated Automatic Adaptive Integration
Methods: Double Extrapolation

Methods: Iterated Parallel Adaptive Integration

− The function evaluation

F (c1, . . . , cj−1, x (k)) =

∫ βj+1

αj+1

dxj+1 . . .

∫ βd

αd

dxd f (c1, . . . , cj−1, x (k), xj+1, . . . , xd ),

is itself an integral in the xj+1, . . . , xd -directions, and is computed by the method(s) for
the inner integrations.
− For j = d , this is the evaluation of the integrand function

F (c1, . . . , cd−1, x (k)) = f (c1, . . . , cd−1, x (k)).

− Subsequently, we give results obtained with 1D iterated integration by the programs

DQAGE and DQAGSE from QUADPACK [11, 3], where the local integration is performed

with the (7, 15)- or the (10, 21)-points Gauss-Kronrod pairs.
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Methods: Iterated Automatic Adaptive Integration
Methods: Double Extrapolation

Methods: Iterated Parallel Adaptive Integration

− The inner integrals are independent and can thus be evaluated in parallel, by
multiple threads [4] (using, e.g., OpenMP [10]).

− Important properties of this parallelization include:
(1) large granularity of the parallel integration, involving the inner integrations;

(2) apart from possibly the order of the summation in the local rule evaluation, the

parallel calculation is the same as the sequential evaluation.
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Methods: Iterated Automatic Adaptive Integration
Methods: Double Extrapolation

Methods: Double Extrapolation

− Linear extrapolation is based on an asymptotic expansion of the form

I(ε) ∼
∑
k≥κ

Ck ϕk (ε), as ε→ 0 (1)

where the sequence of ϕk (ε) is known.

− Here, κ = −2 and ϕk (ε) = εk .

− The expansion is truncated after 2, 3, . . . , n terms to form linear systems of

increasing size in the Ck variables. This is a generalized form of Richardson

extrapolation [1, 13].
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Methods: Iterated Automatic Adaptive Integration
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Methods: Double Extrapolation

− For fixed ε = ε`, the integral

I = Γ(N −
νL
2

) (−1)N
∫
SN−1

N−1∏
r=1

dxr U−ν/2(V − i%)νL/2−N

may have singularities as %→ 0.

− Since the structure of the expansion in % is unknown, we apply a non-linear
extrapolation with the ε-algorithm [12, 14] to a sequence of I(ε`, %) as %→ 0.

− The combined ε and % extrapolations constitute a double extrapolation [2, 6, 15, 8].
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Results lemon1111: C−2,C−1,C0 as a function of s
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Results Graph 2116: C−2,C−1,C0 as a function of s
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Results notes

− lemon1111: Pronounced threshold at s = (1 + 1)2 = 4.
− Threshold at s = (1 + 1 + 1)2 = 9 is not pronounced.
− Good comparison with pySecDec results, except for s = 4 (where pySecDec
returns 0).

− Graph 2116: Pronounced threshold at s = (2× 0.64308)2 = 1.6542075456
− Threshold at s = (2 ∗ 0.64308 + 0.7295008)2 = 4.06288846065664 is not
pronounced.
− Results were obtained with the particle masses and s in the unit of M2

H = 1.

− Results for Magdeburg (coefficients) for mass assignments 1111x with x = 0, 1, 2

were given in [15].
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Timing Results DQAGE for Magdeburg as a function of #threads
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Figure: Magdeburg11111: Parallel times [sec] of DQAGE as a function of #threads,
with DQAGE keys 2, 2, 2, 2 (Gauss-Kronrod rule pair with 10-21 points for local
integrations), m1 = m2 = m3 = m4 = m5, s = 1, Extrapolation for
% = 2−17, 2−18, . . . , 2−31
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Conclusions

−Whereas symbolic or symbolic/numerical calculations are performed for some
challenging problems using existing software packages, we focus on the development
of fully numerical methods for the evaluation of Feynman loop integrals.

− The integration strategies adhere to automatic adaptive integration, which is a
black-box approach for generating an approximation, assuming little or no knowledge
of the problem, apart from the specification of the integrand function.

−We demonstrated efficient strategies based on iterated integration, multithreading

with OpenMP, and double extrapolation.
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