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Open questions towards HL-LHC

• Facing 25 times the amount of data 
• What do we need to understand the data? (read: find new physics)

• Precision predictions 
• Higher order amplitudes 
• Event generation 
• Shower 
• Detector simulation

• Optimized analysis for high-dimensional data 
• Likelihood free inference                       

• Optimal Observables, Unfolding 
• Anomaly detection                 
• Uncertainty treatment for ML methods
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How can ML help?



Monte carlo event generation

1. Generate phase space points 

 set of four-momenta  

2. Calculate event weight 

     

                                 PDF                            Matrix element               Phase space mapping 

3. Unweighting 

keep events with 

→ pi

wevent = f(x1, Q2)f(x1, Q2) × ℳ(x1, x2, p1, …, pn) × J(pi(r))

wi

wmax
> r ∈ [0,1]

Bottlenecks 

1. Slow matrix element calculation 
 Complexity grows exponentially with 

-  # final state particles 
-  Precision (LO, NLO, NNLO, …) 

2. Low unweighting efficiency 
 Discard most events if  
 Optimize phase space mapping 

➡ 

wi ≪ wmax

J(pi(r)) = ( f × ℳ)−1
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ML for Amplitudes 
- 

Approximation with Regression



5

Limitations of a standard network

Standard approach 

Training data  
 

Loss  

T = (phase space points x, Amplitudes A′ (x))

ℒ = (A′ (x) − NN(x))2

Example 
 @LO 

90k training amplitudes 
870k test amplitudes  

gg → γγg(g)

 A better formulation of the problem 

 Find  (from now on x is implicit) 

 

→

→ p(A |x, T )

→ p(A) = ∫ dw p(A |w)p(w |T )

≈ ∫ dw p(A |w)q(w)

PROBLEM: For limited data there is no unique solution
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Capturing probabilities with Bayesian networks 
Building the loss function 

Approximate   by minimizing KL divergence q(w)

ℒBNN = KL[q(w), p(w |T )]

= ∫ dw q(w) log
q(w)

p(w |T )

= ∫ dw q(w) log
q(w)p(T )

p(w)p(T |w)

= KL[q(w), p(w)] − ∫ dw q(w) log p(T |w)

Gaussian prior 

σ2
q − σ2

p + (μq − μp)2

2σ2
p

+ log
σp

σq

Gaussian uncertainty

 p(A) = ∫ dw p(A |w)p(w |T ) ≈ ∫ dw p(A |w)q(w)

2

2

1

1

Bayesian network 

1 2
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How to obtain A and σ

 
⟨A⟩ = ∫ dA dω A p(A |ω, T ) q(ω)

≡ ∫ dω q(ω) A(ω) with A(ω) = ∫ dA A p(A |ω)

Uncertainty splits into  and  σmodel σpred

σ2
tot = ∫ dA dω (A − ⟨A⟩)2 p(A |ω) q(ω)

= ∫ dω q(ω)[A2(ω) − A(ω)2 + (A(ω) − ⟨A⟩)2]
≡ σ2

model + σ2
pred

Convergence*Data intrinsic (noise)*

* not easily separable in the limit of  exact training data
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Results - out of the box

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN( )-A) / model( )

10 7

10 6

10 5
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10 3

10 2

10 1
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d

training test

 ( = 0.22,
     = 0.97)

     

gg g  ( = 0.16,
= 0.96)

+ Deviations at 1 percent level

Performance worse for rare points with large amplitudes (collinear) Roughly Gaussian but enhanced tails

Precision Δ(train) =
ANN − Atrain

ANN
Calibration Δ(train) =

ANN − Atrain

ANN
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Loss boosting

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN( )-A) / model( )

10 6

10 4

10 2

100

n
o
rm
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z
e
d

training

test

 ( = 0.23,
     = 0.81)

 ( = 0.24,
     = 0.80)

gg g
loss-boosted

Enforce training on samples with  
 include them 5 times in each epoch 

 Repeat 4 times

ΔA > 2σ
→

→

No change in performance Tails reproduced for training data 
Improvement for test data
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Performance boosting

7.5 5.0 2.5 0.0 2.5 5.0 7.5
(ANN( )-A) / model( )

10 5

10 4

10 3

10 2

10 1

n
o
rm

a
li

z
e
d training

test

process-boosted

 ( = 0.17,
= 0.96)

 ( = 0.00,
= 0.94)

gg g

Enforce training on 200 samples with largest uncertainty  
 include them +3 times in each epoch 

 Repeat 20 times

σtot
→

→

Significant improvement in performance
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Kinematic distributions

Standard BNN Precision boosted BNN

Gray shades indicate statistical limitation of training data…



Precision networks for loop amplitudes
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Fast evaluation of NN can accelerate event generation 

Standard NN give little control over prediction 

Bayesian networks provide uncertainty estimates 

Boost network performance for precision or calibration

Precision better than 1% 
Method applicable to all regression problems


