Theo Heimel October 2022

Institut für theoretische Physik Universität Heidelberg

arXiv:2210.00019 Butter, Heimel, Martini, Peitzsch, Plehn

How can we find new physics at the LHC? Maybe it is hidden in rare processes

Need better analysis techniques!

Traditional analysis

- Hand-crafted observables
- Binned data

Only fraction of information used

Matrix element method

- Based on first principles
- Estimates uncertainties reliably
- Optimal use of information

Perfect for processes with few events

Introduction

Combining MEM and cINNs

LHC process

Results

- Process with theory parameter α , hard-scattering momenta x_{hard}
- Likelihood at hard-scattering level given by differential cross section

$$p(x_{\text{hard}}|\alpha) = \frac{1}{\sigma(\alpha)} \frac{d\sigma(\alpha)}{dx_{\text{hard}}}$$

- ullet Neyman-Pearson lemma \Longrightarrow optimal use of information
- Differential cross section only known analytically at hard-scattering level

• Integrate out hard-scattering phase space

$$p(x_{\text{reco}}|\alpha) = \int dx_{\text{hard}} \ \underline{p(x_{\text{hard}}|\alpha)} \ \underline{p(x_{\text{reco}}|x_{\text{hard}},\alpha)}$$
 estimate with network

- Need to learn probability distribution $p(x_{\text{reco}}|x_{\text{hard}},\alpha)$ In practice: ignore α -dependence and learn $p(x_{\text{reco}}|x_{\text{hard}})$
- Not known analytically \rightarrow learn from data

Solution: normalizing flow → **Transfer-cINN**

Normalizing flows

- Conditional Invertible Neural Networks (cINN): [Ardizzone et al., 1907.02392] chain of learnable, invertible transformations with tractable Jacobian
- Distributions linked through change of variable formula

$$p(z_n) = p(z_1) \det \frac{\partial z_1(z_n; c)}{\partial z_n}$$

Flows with uncertainties

deterministic weights w_i

- Quantify training uncertainty with Bayesian Invertible Neural Networks (BINN)
 [MacCay, 1995] [Neal, 2012] [Bellagente et al., 2104.04543]
- Simple modification of deterministic network:
 - → Replace deterministic weights with distribution
 - → Additional term in loss function
- Extracting uncertainties: sample from weight distribution
- ullet Use as generator o Histograms with error bars
- Use as density estimator \rightarrow Error on density

- $|\mathcal{M}|^2$ spans several orders of magnitude
- Narrow distribution from Transfer-cINN

 Integration challenging
- Importance sampling with proposal distribution $q(x_{hard})$

$$p(x_{\text{reco}}|\alpha) = \left\langle \frac{1}{q(x_{\text{hard}})} \ p(x_{\text{hard}}|\alpha) \ p(x_{\text{reco}}|x_{\text{hard}},\alpha) \right\rangle_{x_{\text{hard}} \sim q(x_{\text{hard}})}$$

Bayes' theorem: Integration becomes trivial if

$$x_{\text{hard}} \sim q(x_{\text{hard}}) = p(x_{\text{hard}}|x_{\text{reco}}, \alpha)$$

Solution: normalizing flow → Unfolding-cINN

Putting it all together

• Training data

$$(\alpha, X_{\mathsf{hard}}, X_{\mathsf{reco}})$$

Transfer-cINN learns

$$p(x_{\text{reco}}|x_{\text{hard}})$$

- \rightarrow transfer function
- \rightarrow fast forward simulation
- Unfolding-cINN learns

$$p(x_{\text{hard}}|x_{\text{reco}}, \alpha)$$

 \rightarrow phase space sampling

Introduction

Combining MEM and cINNs

LHC process

Results

• Single Higgs production with anomalous non-CP-conserving Higgs coupling

$$\mathcal{L}_{t\bar{t}H} = -rac{y_t}{\sqrt{2}} \Big[\cos lpha \ \bar{t}t + rac{2}{3} \mathrm{i} \sin lpha \ \bar{t}\gamma_5 t \Big] H$$
 with CP-angle $lpha$

[Artoisenet et al, 1306.6464] [de Aguino, Mawatari, 1307.5607] [Demartin et al, 1504.00611]

• Decays $tHj \rightarrow (bW) (\gamma \gamma) j$. Test on different datasets

Around the SM, $\alpha=0^{\circ}$: low total cross section (few events)

low variation of rate +

kinematic observables still sensitive

ļ

need kinematic observables to use all available information

 \Downarrow

ideal use case for MEM

Introduction

Combining MEM and cINNs

LHC process

Results

Testing the cINNs

Transfer-cINN (reco level plots)

Unfolding-cINN (hard-scattering level plots)

- Check performance on test dataset
 → Transfer-cINN as forward simulator
 - ightarrow Unfolding-cINN: once for each event
- Good agreement with Truth
- Error bars from Bayesian network
 → Within BINN errors in bulk
- deterministic Unfolding-cINN used for integration

- Deterministic network, $\alpha = 0^{\circ}, 45^{\circ}, 90^{\circ}, 400$ events each
- Extract likelihood for different α , sum events, fit polynomial (orange line)
- Compare to likelihood from hard-scattering data (blue line)
- Good agreement between hard-scattering and reco-level
 - → But how large is the systematic uncertainty from training?

- Extract likelihood for 10 sampled networks
 → estimate of systematic error from training
- Only uncertainty from finite training data

 → lack of expressivity not captured

- Minimum and 68% confidence intervals for 20×100 events
- Good correlation betwen reco- and hard-scattering level
- Slight bias can be removed by calibration
- Lagrangian almost symmetric around $\alpha = 0^{\circ}$ \rightarrow sometimes wrong sign

- Final state (bjj) $(\gamma \gamma)$ j + additional jets from ISR and FSR
- Can't resolve between relevant jets and ISR jets during reconstruction
 → combinatorics more difficult
- Loss of sensitivity around $\alpha=0^\circ$
- Worse calibration, more bias
- Increased systematic uncertainty captured by Bayesian network

Introduction

Combining MEM and cINNs

LHC process

Results

- Measure fundamental Lagrangian parameters from small numbers of events
- Transfer-cINN: encode QCD and detector effects
- Unfolding-cINN: efficient integration over hard-scattering phase space
- Without ISR: close to hard-scattering truth
- With ISR: worse performance from more challenging combinatorics
- Promising for extracting maximal information from small event numbers