Product Jacobi-Theta Boltzmann machines with score

matching

Andrea Pasquale, Daniel Krefl, Stefano Carrazza, Frank Nielsen

27th October 2022, ACAT 2022, Bari

UNIVERSITA
DEGLI STUDI I N F N
DI MILANO .




Introduction



Introduction

We started this project aiming to build a model with:

o well suited for pdf estimation and pdf sampling

e built-in pdf normalization (close form expression)

e very flexible with a small number of parameters

We started from Boltzmann Machines (BM).
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Theory



Boltzmann Machine (BM)

Graphical representation

Main Features:
e Visible sector with NV, nodes
e Hidden sector with NV}, nodes
e Binary valued states {0,1} all the nodes

e Connection matrices @, 1" and W between
the nodes

This can be viewed as a statistical system with the following energy for a given state (v, h):
L4 L t
E(v,h) = 3V Tv+ ih Qh+ v Wh+ B,h+ B,v

The probability of finding the system in the state v can be computed by marginalizing h

e—E(’U,h)
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Density estimation using BM?

Can we use BM to perform density estimation?

e Theoretically yes, since P(v) is a parametric density.

e Practically no for a generic BM.

Density estimation is possible only using Restricted BM (RBM).

Figure 1: Graphical description of Restricted Boltzmann Machine

A RBM has trivial visible to visible and hidden to hidden units connections (Q = T = 0)



A new approach to BM

Can we keep the inner sector couplings non-trivial, but the machine solvable?
A possible solution is to go from binary values states to continuos/quantized values.

If we let v; € R and h; € R we get a Continuous Boltzmann machine

o3V (T-WQT ' WHutBLQ ' W'v—3B'A™ B+35,Q" ' By,

P(v) = ~
2m) % \/det<(T - WQ’lwt)’l)

which is essentially a multivariate Gaussian = trivial model.

If instead we let v; € R and h; € Z we get the following

detT  _1,t7y_Bty_BiT 'B, 0(B), +v'W|Q)
P(v) = ~ € R p— tr—1 :
(2m) 0(BL — BIT-'W|Q — W'T— W)

non-trivial closed form solution under mild constraints!




Riemann-Theta BM [Krefl et al., 2017]

Lets take a closer look at the probability density

det T o~ v’ To-Blo-BIT B, 0(Bj, +v'W|Q)
(2m) N 6(B, — BIT'W|Q — W'T™'w)

Multivariate gaussian modulated by the functions 6 which are known as Riemann-Theta

functions: ( ) ) )
(1
0(279) — z : 6271'1 5N Qn+n z
nez™

Therefore we called this model Riemann-Theta BM or RTBM.
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Figure 1: A few examples of P(v) for different parameters



Properties of RTBMs



Learning [Krefl et al., 2017]

With a RTBM we can perform density estimation to learn the parameters via maximum
likelihood. That is, for N samples x; from an unknown probability density we take the cost
function

N
C=- Z log P(z;)
i=1

and we solve the optimization problem:

argmin C
Q,T\W,By,,B,

Gradient based techniques

Since P(v) is fully analytical we can solve the optimization problem using gradient or
non-gradient based techniquesl.

1n this work we are using the CMA-ES optimizer.



Examples [Krefl et al., 2017]

0.200
05
0175
020
0.150 04
0125 015
P p 03 P
0.100
010
0.075 02
0.050
o1 005
0.025
0.000 00 o
00 25 50 75 100 125 150 175 200 -4 -2 o 2 4 20 -15 -0 -5 0 5 10 15 20
v v
o
035
0.08
0175
0.07 0.30
0150
0.06 025
0125
0.05
0.20
’ ’ ? 0100
0.04
018 0075
0.03
010
0.02 0.050
0.01 0.05 0.025
0.00 0.00 } o
20 1o 0 10 20 21 0 1 2 3 4 5 6 -100 -75 -50 -25 00 25 50 75 100

e Blue line: real

‘ . distribution

2 : e Red line: RTBM
‘ z e Histogram: sample
. e from real distribution

6 -4 2 0 2 4 6 00 02 6 -4 2 0 2 a 6 000 025 050 7
v P(vz) v Plvz)




Properties of RTBM [Carrazza and Krefl, 2018]

Over the last years we discoverd that the RTBM possesses a lot of nice properties.

. Affine transformations
Sampling
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, , P(v) stays in the same distribution under affine
We can easily extract samples from P(v) using .

; ] ) transformations
numerical evaluation of # functions

w=Av+b, W~ Py,v)

)



Limitations



Despite the promising results there is one major issue:
The learning process can become slow for (IV,, > 5).
It is not possible to use RTBMs for:
e Complicated low-dimensional models e High dimensional models (N, > N,)
Why this happens?

The computation of # and its derivatives is a bottleneck for increasing value of N, 2,

bz Q) = Z GQM(%”th-&-ntZ) .

nEZN

2The computational times increase exponentially due to the computation of the exponential of a N;, X N,
matrix required by the 6 function.



Improving the RTBM



Factoriza bility [Pasquale et al., 2022 in preparation]

To speed up the calculation we can exploit the following property of the 6 function:

Factorizability
Under the assumption that 2 is a complex diagonal NV x N matrix, whose imaginary part is
positive definite, the Riemann-Theta function 0(z, 2) factorizes

N
0(z,Q) = HQ(% Q) (1)
i=1
Riemann Theta
== Factorized Riemann Theta
1004 e Important speed-up
as we increase NV
g
% e Computational times
& 1077
i almost costant
1072

Figure 2: Average time to compute the RT using Deconinck et al., 2002
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Factoriza bility [Pasquale et al., 2022 in preparation]

Can we exploit the previous property directly on P(v)?

6(B. +o'w
B det T —%vtT'u—Bz—BZTleU ( h |Q)
P(v) = We -
0(B, - BiT"'W|Q - W'T"'W)

We have to compute two 6 function:

o |O(B] +v'W|Q)| can we take Q diagonal? Yes

e |0(B), —B\T'W|Q -W'T™'W)| Q — W'T™"W diagonal? not feasible

Obsv: the second term is a normalization term.

Idea: Can we select a specific cost function to avoid computing that term?

11



Score Matching [Lyu, 2012]

A particular parameter learning methodology that can address this issue is Score Matching,
which is based on the Fisher divergence.

2

Vap(@) Vea(zd|

p(x) q(z,¢)

3

Dy (pllge) = / p(z)

which is slightly different from the Kullback-Leiber divergence:

DKL(qus) = /p(w) log qz()i,wé) de

We will show in the next slide that the normalization terms cancel out since

(i(i)
Dp o w log q(z,§)

Therefore if we start by assuming that @ is diagonal the learning process will involve only the
computation of 1d € functions!

12



Score Matching [Pasquale et al., 2022 in preparation]

We can simplify the expression for Dy under the assumption that our model ¢(x, ) is
sufficiently regular, which is the case of the RTBM.

Dr(pllge) = /p(x) (W;p log q(z,0)|* + 24, log g(z, 9)) + const

2

Q

Z?’:l V,, log q(v;,0)] + 2A,, log q(v;,0) | + const.

~Cp

We call C Fisher cost function and it is particularly useful for non-normalizable models.
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Applications




Applications

In the following slides we show how the RTBM perform using empirical datasets.

=< We start from low dimensional datasets and we want to generate more data: data
augmentation.

=< To quantify the quality of the samples generated we use a 2-D implementation of the
Kolmogorov-Smirnov known as Fasano-Franceschini test.>.

< We compare the performance of this model with state-of-the-art density estimation
techniques such as Kernel Density Estimation * (KDE) and Normalizing Flows® (NF).

3For more details about this multi-dimensional generalization of the KS test see Fasano and Franceschini, 1987.
“We use a gaussian kernel where the optimal bandwidth is selected after a hyperoptimization using a grid
search cross validation.

®For the NF we employ an architecture with rational-quadratic coupling transforms as in Durkan et al., 2019
trained using maximum likelihood estimation
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Uranium dataset [Pasquale et al., 2022 in preparation]
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Figure 3: rRTBMs modelling the concentrations of Uranium and Cesium (first row), Cobalt and Titanium (second row)
and, Cesium and Scandium (third row) for N, = 2,4, 6 (left,center,right). The rRTBM contours and histograms of the

original data are shown.
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Uranium dataset

[Pasquale et al., 2022 in preparation]

0.4

0.4 0.4
T T T T T T T
15 2.0 2.5 15 2.0 2.5 15 2.0 2.5
Cs Cs Cs
Dataset KSn, =2 KSn, =4 KS5n, =6 KiwrE K5
s 0114 + 0.003 0114+ 0003 0.103 + 0002 0124 = 0,002 0,109 + 00001
Ca Ti 0099 + 0.003 0.123 + 0.002 0081 = .00z 0089 = 0,003 0,135 + 00004
s Se 00sd = 0002 0.08S + 0.001 0201 + 0002 0,102 £ 0,002 0.094 + 00002

Table 2: KS distance between the rRTBM, normalizing flow (NF) and kernel density esti-

mation (kde) models and the original data. For each model we averaged the KS distances for

10 independent samples of 5000 data points, and reported the mean and standard deviation.

The lowest mean distance obtained for each dataset is printed in bold.
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Faithful dataset [Pasquale et al., 2022 in preparation]
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Figure 4: rRTBMs trained to model the waiting time between eruptions and the duration of the eruption for the Old
Faithful geyser for N;, = 2 (top left), N;, = 4 (top right), N;, = 6 (bottom left) and N;, = 8 (bottom right). The curves
correspond to the rRTBM model and the gray histogram is obtained from the original data with 30 bins.
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Iris dataset [Pasquale et al., 2022 in preparation]
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Figure 5: rRTBMs trained to model the joint distribution of sepal width and sepal length from the Iris dataset for N;, = 2
(top left), N;, = 4 (top right), N;, = 6 (bottom left) and N;, = 8 (bottom right). The curves correspond to the rRTBM
model and the gray histogram is obtained from the original data with 30 bins.
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Results [Pasquale et al., 2022 in preparation]

Dataset KSn, =2 KSng =4 KSn, =6 KSx, =5 K5 4 KSnF

Iris 0205 + 0003 0.202 +£ 0003 0399 + 0003 0333 + 0.003 0173 + U003 0215 + 0.002
Old Faithful 00215 £ 0003 0,196 = 0.003 0209 + 00003 0.253 + 0.003 0.151 + 0001 0,167 + 0.1

Table 3: KS distance between the rRTBM, kernel density estimation (kde) and normalizing
flow (NF) models and the original data. Reported values are averaged over independent runs,

as in table @.

= The RTBM is the model with the lowest KS for the uranium dataset.
= In the other cases it is still competitive.

= We successfully generate more data (5000) starting from low-sized datasets (~ 200 points)
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Conclusion




In summary

e The RTBM is a valid model to perform density estimation even when @ is diagonal
e Using score matching we are able to train efficiently using large values of IV,

e Open source code soon available here: https://github.com/RiemannAI/theta
For the future

e Speed up the computation of the 6 by moving to a GPU pr FPGA implementation

e Possibility to use this mechanism to perform MC multi-dimensional integration for physics
related problem

20


https://github.com/RiemannAI/theta

Thanks for listening!
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Overfitting problems

A common downside Goodness of Fit test is the fact that they do not take into account the
complexity of the model.

KDE NFLOW RTBM

7

& KS =011
o i [ 7

Is there a way to quantify the overfitting behavior of a model?
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Overfitting problems

A common downside Goodness of Fit test is the fact that they do not take into account the
complexity of the model.

KDE NFLOW RTBM

7

& KS =011
o i [ 7

Is there a way to quantify the overfitting behavior of a model?

Fractal dimension!
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What is the fractal dimension?

We can associate a continuum dimension to lines and surfaces.

H
|

AT

What happens when we apply this to the surface generate from the previous models?

Dataset NF KDE RTBEMy,.: RTBMy, -4 RTBMy, -5
U s 2.60 249 2.50 2.49 2.49 9 We can quantify the
Co Ti 2.57 250 2.49 2.50 2.51 L

Cs Sc 2.69 250 2.49 2.40 .49 overfitting in terms of
faithful ~ 2.33  2.00 2.11 2.11 2.13 the fractal dimension.
iris 2.58 242 2.15 2.36 2.47
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Gradients for RTBM [Pasquale et al., 2022 in preparation]

a”i log P(U) = _(Tv)i - (Bv)z + (WD)z )
97 log P(v) = =Ty, + (WHW');; + (WD)},
with D the normalized gradient and H the normalized hessian

Vi0(B, +0'W|Q) ViV,6(B, +0'W|Q)

Pr= T o) T s e wie)
If Q is diagonal
Np oo Aot
0y, log P(v) = —(Tv); — (B,); + Z 9y, 0((By +v'W);|Qj;)

0B+ o' W)Q) T

N 2 A t t
"0, 0((By, +v'W)iQ.5)
92 log P(v) = — Ty + Y —ah L I gy2
O((By, +v"W);|Q,5)

j=1
Bh+v W) |Q7J))
Z 0((B, +v'W);|Q;;) J

j=1
The cost function can be evaluated using only 1d RT functions!
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Efficient calculation of the 1d RT [Pasquale et al., 2022 in preparation]

The computation of the RT and its derivatives is computationally challenging due to the
infinite sum over an N-dimensional integer lattice zN

6(2,0) := Z 2mi(3n'Qnn'z)

nez™

For the multi-dimensional case we can obtain a numerical approximation by summing over an
finite subset of lattice points.
For the 1d case there exist more efficient methods. A possibility is to truncate the series:

2 . .
0(z,Q)~ Sg(z,Q) =1+ Z q" (e2mm + eianZ) =1+ Z Uy, -
0<n<B 0<n<B

It can be shown (see Labrande, 2015) that v,, can be computed recursively, giving us a fast
algorithm to evaluate the RT in dim 1.

2n 4n
Un+l =q V1V —q Up_q1- (2)

i)
where ¢ = e .
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What about the gradients? [Pasquale et al., 2022 in preparation]

To speed up the learning process for the RTBM we would like to have a similar algorithm for
the derivatives of the RT function. In our work he prove that this is possible:

d
ae(z,ﬂ) ~Up(z,Q) = Z —47rnq sin(27n2) Z w,, ,

1<n<B 1<n<B

pe
—50(2,Q) = V(2,Q) = Z —87T2n2q cos(2mnz) Z &n -

dz 1<n<B 1<n<B

After a few mathematical passages it can be shown that there exist a recurrence to compute
both w,, and &,,.

2¢08(2m2) 9541 q4n
=n+1)|———= —
u}nJrl (n + )|: n q Wy, n—1 n—1|>
2cos(2mz) oy 1 n
£n+1 = (n + 1)2[ (2 >q2 +1£n - 2q4 gn 1:| .
n (n—1)
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Results

[Pasquale et al., 2022 in preparation]
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Sampling algorithm [Carrazza and Krefl, 2018]

The probability for the visible sector can be expressed as:

/
P(v) =Y P(v|h)P(h), / P(h)
[h] \/i
where P(v|h) is a multivariate gaussian. P(v) can be *——o oo
easily sampled using the following algorithm: E(h) h

e sample h ~ P(h) using RT numerical evaluation
0 = 0,, + ¢(R) with ellipsoid radius R such that

~T-'W +T-'W
e(R)
Py em <! P(v)
is the probability that a point is sampled outside the
ellipsoid of radius R, while -
T-'B, 7;

9
S Ph)= "
0
[h](R) n+e(R)

is the sum over the lattice points inside the ellipsoid.

e sample v ~ P(v|h)
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Sampling examples

One dimensional case:

[Carrazza and Krefl, 2018]

016 — Gamma pdf — Gaussian mixture pdf 030 — Cauchy pdf
014 ~—— RTBM model 0.08 ~——— RTBM model ~— RTBM model
Sampling N, = 10° 0.07 Sampling N, = 10° Sampling N, = 10°
0.12 025
0.06
0.10 0.20
P 0.05 P
0.03 0.10
0.04 0.02
0.02 0.01 0.05
0.00 0.00 0.00
3 : e S e W > T L R
. ’
Multi-dimensional case
0.4
P(v1)
DIZ’/\/\/’%\
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o ]
e Blue line: Real distribution
4l ]
e Red line: RTBM
N ]
v, | e Histogram: sample from RTBM
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Affine Transformations [Carrazza and Krefl, 2018]

We observe that P(v) stays in the same
distribution under affine transformations, i.e.

rotation and translation
w=Av+b, WNPAyb(U),

if the linear transformation A has a full column
rank. The connection matrices and the biases
of the transformed RTBM are given by:

7' = AT A" B, — (A")'B, —Tb,
W — (AN'W, B, = B, —W'.

where AT is the left pseudo-inverse defined as

AT = (A'a)tar.

Example: rotation of /4 and scaling of 1/2
(N'u = 27 Nh = 2)

0.4

P(v1)
0.2

-6 -4 -2 0 2 4 6 0.00 0.25 0.50
Vi P(v2)
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