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Introduction



Introduction

We started this project aiming to build a model with:

• well suited for pdf estimation and pdf sampling

• built-in pdf normalization (close form expression)

• very flexible with a small number of parameters

We started from Boltzmann Machines (BM).
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Theory



Boltzmann Machine (BM)

Graphical representation

Main Features:

• Visible sector with Nv nodes

• Hidden sector with Nh nodes

• Binary valued states {0,1} all the nodes

• Connection matrices Q, T and W between
the nodes

This can be viewed as a statistical system with the following energy for a given state (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

The probability of finding the system in the state v can be computed by marginalizing h

P (v) =
∑
h

e−E(v,h)

Z
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Density estimation using BM?

Can we use BM to perform density estimation?

• Theoretically yes, since P (v) is a parametric density.

• Practically no for a generic BM.

Density estimation is possible only using Restricted BM (RBM).

A RBM has trivial visible to visible and hidden to hidden units connections (Q = T = 0)
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A new approach to BM

Can we keep the inner sector couplings non-trivial, but the machine solvable?

A possible solution is to go from binary values states to continuos/quantized values.

If we let vi ∈ R and hj ∈ R we get a Continuous Boltzmann machine

P (v) =
e−

1
2 v

t
(T−WQ

−1
W

t
)v+B

t
hQ

−1
W

t
v− 1

2B
t
A

−1
B+ 1

2B
t
hQ

−1
Bh

(2π)
Nv
2

√
det

(
(T −WQ−1W t)−1

) ,

which is essentially a multivariate Gaussian ⇒ trivial model.

If instead we let vi ∈ R and hj ∈ Z we get the following

P (v) =

√
detT

(2π)Nv
e−

1
2 v

t
Tv−B

t
vv−B

t
vT

−1
Bv

θ̃(Bt
h + vtW |Q)

θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W )

.

non-trivial closed form solution under mild constraints!
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Riemann-Theta BM [Krefl et al., 2017]

Lets take a closer look at the probability density

P (v) =

√
detT

(2π)Nv
e−

1
2 v

t
Tv−B

t
vv−B

t
vT

−1
Bv

θ̃(Bt
h + vtW |Q)

θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W )

.

Multivariate gaussian modulated by the functions θ which are known as Riemann-Theta
functions:

θ(z,Ω) :=
∑
n∈ZN

e2πi
(

1
2n

t
Ωn+n

t
z
)
.

Therefore we called this model Riemann-Theta BM or RTBM.
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Figure 1: A few examples of P (v) for different parameters 5



Properties of RTBMs



Learning [Krefl et al., 2017]

With a RTBM we can perform density estimation to learn the parameters via maximum
likelihood. That is, for N samples xi from an unknown probability density we take the cost
function

C = −
N∑
i=1

logP (xi)

and we solve the optimization problem:

argmin
Q,T,W,Bh,Bv

C

Gradient based techniques
Since P (v) is fully analytical we can solve the optimization problem using gradient or
non-gradient based techniques1.

1In this work we are using the CMA-ES optimizer.
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Examples [Krefl et al., 2017]
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• Blue line: real
distribution

• Red line: RTBM

• Histogram: sample
from real distribution

Blue line: true distribution Red Line: RTBM
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Properties of RTBM [Carrazza and Krefl, 2018]

Over the last years we discoverd that the RTBM possesses a lot of nice properties.

Sampling
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We can easily extract samples from P (v) using
numerical evaluation of θ functions

Affine transformations
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P (v) stays in the same distribution under affine
transformations

w = Av + b , w ∼ PA,b(v) ,
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Limitations



Limitations

Despite the promising results there is one major issue:

The learning process can become slow for (Nh > 5).

It is not possible to use RTBMs for:

• Complicated low-dimensional models • High dimensional models (Nh ≥ Nv)

Why this happens?

The computation of θ and its derivatives is a bottleneck for increasing value of Nh
2.

θ(z,Ω) :=
∑
n∈ZN

e2πi
(

1
2n

t
Ωn+n

t
z
)
.

2The computational times increase exponentially due to the computation of the exponential of a Nh ×Nh

matrix required by the θ function.
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Improving the RTBM



Factorizability [Pasquale et al., 2022 in preparation]

To speed up the calculation we can exploit the following property of the θ function:

Factorizability
Under the assumption that Ω is a complex diagonal N ×N matrix, whose imaginary part is
positive definite, the Riemann-Theta function θ(z,Ω) factorizes

θ(z,Ω) =

N∏
i=1

θ(zi,Ωii) (1)

Figure 2: Average time to compute the RT using Deconinck et al., 2002

• Important speed-up
as we increase N

• Computational times
almost costant
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Factorizability [Pasquale et al., 2022 in preparation]

Can we exploit the previous property directly on P (v)?

P (v) =

√
detT

(2π)Nv
e−

1
2v

t
Tv−B

t
v−B

t
vT

−1
Bv

θ̃(Bt
h + vtW |Q)

θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W )

.

We have to compute two θ function:

• θ̃(Bt
h + vtW |Q) can we take Q diagonal? Yes

• θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W ) Q−W tT−1W diagonal? not feasible

Obsv: the second term is a normalization term.

Idea: Can we select a specific cost function to avoid computing that term?
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Score Matching [Lyu, 2012]

A particular parameter learning methodology that can address this issue is Score Matching,
which is based on the Fisher divergence.

DF (p||qξ) =
∫

p(x)

∣∣∣∣∣∇x p(x)

p(x)
− ∇x q(x, ξ)

q(x, ξ)

∣∣∣∣∣
2

dx ,

which is slightly different from the Kullback-Leiber divergence:

DKL(p||qξ) =
∫

p(x) log
p(x)

q(x, ξ)
dx ,

We will show in the next slide that the normalization terms cancel out since

DF ∝ d(i)

dx(i)
log q(x, ξ)

Therefore if we start by assuming that Q is diagonal the learning process will involve only the
computation of 1d θ functions!
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Score Matching [Pasquale et al., 2022 in preparation]

We can simplify the expression for DF under the assumption that our model q(x, θ) is
sufficiently regular, which is the case of the RTBM.

DF (p||qθ) =
∫

p(x)

(∣∣∇x log q(x, θ)
∣∣2 + 2∆x log q(x, θ)

)
+ const

≈
∑N

i=1

∣∣∣∣∣∇vi
log q(vi, θ)

∣∣∣∣∣
2

+ 2∆vi
log q(vi, θ) + const .

≈ CF

We call CF Fisher cost function and it is particularly useful for non-normalizable models.
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Applications

In the following slides we show how the RTBM perform using empirical datasets.

 We start from low dimensional datasets and we want to generate more data: data
augmentation.

 To quantify the quality of the samples generated we use a 2-D implementation of the
Kolmogorov-Smirnov known as Fasano-Franceschini test.3.

 We compare the performance of this model with state-of-the-art density estimation
techniques such as Kernel Density Estimation 4 (KDE) and Normalizing Flows5 (NF).

3For more details about this multi-dimensional generalization of the KS test see Fasano and Franceschini, 1987.
4We use a gaussian kernel where the optimal bandwidth is selected after a hyperoptimization using a grid
search cross validation.
5For the NF we employ an architecture with rational-quadratic coupling transforms as in Durkan et al., 2019
trained using maximum likelihood estimation
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Uranium dataset [Pasquale et al., 2022 in preparation]

Figure 3: rRTBMs modelling the concentrations of Uranium and Cesium (first row), Cobalt and Titanium (second row)
and, Cesium and Scandium (third row) for Nh = 2, 4, 6 (left,center,right). The rRTBM contours and histograms of the
original data are shown.
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Uranium dataset [Pasquale et al., 2022 in preparation]
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Faithful dataset [Pasquale et al., 2022 in preparation]

Figure 4: rRTBMs trained to model the waiting time between eruptions and the duration of the eruption for the Old
Faithful geyser for Nh = 2 (top left), Nh = 4 (top right), Nh = 6 (bottom left) and Nh = 8 (bottom right). The curves
correspond to the rRTBM model and the gray histogram is obtained from the original data with 30 bins.
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Iris dataset [Pasquale et al., 2022 in preparation]

Figure 5: rRTBMs trained to model the joint distribution of sepal width and sepal length from the Iris dataset for Nh = 2

(top left), Nh = 4 (top right), Nh = 6 (bottom left) and Nh = 8 (bottom right). The curves correspond to the rRTBM
model and the gray histogram is obtained from the original data with 30 bins.
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Results [Pasquale et al., 2022 in preparation]

 The RTBM is the model with the lowest KS for the uranium dataset.

 In the other cases it is still competitive.

 We successfully generate more data (5000) starting from low-sized datasets (≈ 200 points)
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Conclusion



Outlook

In summary

• The RTBM is a valid model to perform density estimation even when Q is diagonal

• Using score matching we are able to train efficiently using large values of Nh

• Open source code soon available here: https://github.com/RiemannAI/theta

For the future

• Speed up the computation of the θ by moving to a GPU pr FPGA implementation

• Possibility to use this mechanism to perform MC multi-dimensional integration for physics
related problem

20
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Overfitting problems

A common downside Goodness of Fit test is the fact that they do not take into account the
complexity of the model.

KDE NFLOW RTBM

Is there a way to quantify the overfitting behavior of a model?

Fractal dimension!
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What is the fractal dimension?

We can associate a continuum dimension to lines and surfaces.

What happens when we apply this to the surface generate from the previous models?

 We can quantify the
overfitting in terms of
the fractal dimension.
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Gradients for RTBM [Pasquale et al., 2022 in preparation]

∂vi logP (v) = −(Tv)i − (Bv)i + (WD)i ,

∂2
vi
logP (v) = −Tii + (WHW t)ii + (WD)2i ,

with D the normalized gradient and H the normalized hessian

(D)i =
∇iθ̃(B

t
h + vtW |Q)

θ̃(Bt
h + vtW |Q)

, (H)ij =
∇i∇j θ̃(B

t
h + vtW |Q)

θ̃(Bt
h + vtW |Q)

.

If Q is diagonal

∂vi logP (v) = −(Tv)i − (Bv)i +

Nh∑
j=1

∂vi θ̃((B
t
h + vtW )j |Qjj)

θ̃((Bt
h + vtW )j |Qjj)

Wji ,

∂2
vi
logP (v) =− Tii +

Nh∑
j=1

∂2
vi
θ̃((Bt

h + vtW )j |Qjj)

θ̃((Bt
h + vtW )j |Qjj)

W 2
ji

−
Nh∑
j=1

(∂vi θ̃((B
t
h + vtW )j |Qjj))

2

θ̃((Bt
h + vtW )j |Qjj)

Wji .

The cost function can be evaluated using only 1d RT functions!
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Efficient calculation of the 1d RT [Pasquale et al., 2022 in preparation]

The computation of the RT and its derivatives is computationally challenging due to the
infinite sum over an N -dimensional integer lattice ZN

θ(z,Ω) :=
∑
n∈ZN

e2πi
(

1
2n

t
Ωn+n

t
z
)
.

For the multi-dimensional case we can obtain a numerical approximation by summing over an
finite subset of lattice points.

For the 1d case there exist more efficient methods. A possibility is to truncate the series:

θ(z,Ω) ≈ SB(z,Ω) = 1 +
∑

0<n<B

qn
2

(e2πinz + e−2πinz) =: 1 +
∑

0<n<B

vn .

It can be shown (see Labrande, 2015) that vn can be computed recursively, giving us a fast
algorithm to evaluate the RT in dim 1.

vn+1 = q2nv1vn − q4nvn−1 . (2)

where q = eiπΩ .
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What about the gradients? [Pasquale et al., 2022 in preparation]

To speed up the learning process for the RTBM we would like to have a similar algorithm for
the derivatives of the RT function. In our work he prove that this is possible:

d

dz
θ(z,Ω) ≈ UB(z,Ω) =

∑
1<n<B

−4πnqn
2

sin(2πnz) =:
∑

1<n<B

wn ,

d2

dz2
θ(z,Ω) ≈ VB(z,Ω) =

∑
1<n<B

−8π2n2qn
2

cos(2πnz) =:
∑

1<n<B

ξn .

After a few mathematical passages it can be shown that there exist a recurrence to compute
both wn and ξn.

wn+1 = (n+ 1)

[
2 cos(2πz)

n
q2n+1wn − q4n

n− 1
wn−1

]
,

ξn+1 = (n+ 1)2
[
2 cos(2πz)

n2 q2n+1ξn − 1

(n− 1)2
q4nξn−1

]
.
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Results [Pasquale et al., 2022 in preparation]
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Sampling algorithm [Carrazza and Krefl, 2018]

The probability for the visible sector can be expressed as:

P (v) =
∑
[h]

P (v|h)P (h) ,

where P (v|h) is a multivariate gaussian. P (v) can be
easily sampled using the following algorithm:

• sample h ∼ P (h) using RT numerical evaluation
θ = θn + ϵ(R) with ellipsoid radius R such that

p =
ϵ(R)

θn + ϵ(R)
≪ 1

is the probability that a point is sampled outside the
ellipsoid of radius R, while∑

[h](R)

P (h) =
θn

θn + ϵ(R)
≈ 1 ,

is the sum over the lattice points inside the ellipsoid.

• sample v ∼ P (v|h)
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Sampling examples [Carrazza and Krefl, 2018]

One dimensional case:
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Multi-dimensional case
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• Blue line: Real distribution

• Red line: RTBM

• Histogram: sample from RTBM
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Affine Transformations [Carrazza and Krefl, 2018]

We observe that P (v) stays in the same
distribution under affine transformations, i.e.
rotation and translation

w = Av + b , w ∼ PA,b(v) ,

if the linear transformation A has a full column
rank. The connection matrices and the biases
of the transformed RTBM are given by:

T−1 → AT−1At , Bv → (A+)tBv − Tb ,

W → (A+)tW , Bh → Bh −W tb .

where A+ is the left pseudo-inverse defined as

A+ = (AtA)−1At .

Example: rotation of θ/4 and scaling of 1/2
(Nv = 2, Nh = 2)
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