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Introduction



Introduction

We started this project aiming to build a model with:

• well suited for pdf estimation and pdf sampling

• built-in pdf normalization (close form expression)

• very flexible with a small number of parameters

We started from Boltzmann Machines (BM).
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Theory



Boltzmann Machine (BM)

Graphical representation

Main Features:

• Visible sector with Nv nodes

• Hidden sector with Nh nodes

• Binary valued states {0,1} all the nodes

• Connection matrices Q, T and W between
the nodes

This can be viewed as a statistical system with the following energy for a given state (v, h):

E(v, h) =
1

2
vtTv +

1

2
htQh+ vtWh+Bhh+Bvv

The probability of finding the system in the state v can be computed by marginalizing h

P (v) =
∑
h

e−E(v,h)

Z
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Density estimation using BM?

Can we use BM to perform density estimation?

• Theoretically yes, since P (v) is a parametric density.

• Practically no for a generic BM.

Density estimation is possible only using Restricted BM (RBM).

A RBM has trivial visible to visible and hidden to hidden units connections (Q = T = 0)
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A new approach to BM

Can we keep the inner sector couplings non-trivial, but the machine solvable?

A possible solution is to go from binary values states to continuos/quantized values.

If we let vi ∈ R and hj ∈ R we get a Continuous Boltzmann machine

P (v) =
e−

1
2 v

t
(T−WQ

−1
W

t
)v+B

t
hQ

−1
W

t
v− 1

2B
t
A

−1
B+ 1

2B
t
hQ

−1
Bh

(2π)
Nv
2

√
det

(
(T −WQ−1W t)−1

) ,

which is essentially a multivariate Gaussian ⇒ trivial model.

If instead we let vi ∈ R and hj ∈ Z we get the following

P (v) =

√
detT

(2π)Nv
e−

1
2 v

t
Tv−B

t
vv−B

t
vT

−1
Bv

θ̃(Bt
h + vtW |Q)

θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W )

.

non-trivial closed form solution under mild constraints!
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Riemann-Theta BM [Krefl et al., 2017]

Lets take a closer look at the probability density

P (v) =

√
detT

(2π)Nv
e−

1
2 v

t
Tv−B

t
vv−B

t
vT

−1
Bv

θ̃(Bt
h + vtW |Q)

θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W )

.

Multivariate gaussian modulated by the functions θ which are known as Riemann-Theta
functions:

θ(z,Ω) :=
∑
n∈ZN

e2πi
(

1
2n

t
Ωn+n

t
z
)
.

Therefore we called this model Riemann-Theta BM or RTBM.
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Figure 1: A few examples of P (v) for different parameters 5



Properties of RTBMs



Learning [Krefl et al., 2017]

With a RTBM we can perform density estimation to learn the parameters via maximum
likelihood. That is, for N samples xi from an unknown probability density we take the cost
function

C = −
N∑
i=1

logP (xi)

and we solve the optimization problem:

argmin
Q,T,W,Bh,Bv

C

Gradient based techniques
Since P (v) is fully analytical we can solve the optimization problem using gradient or
non-gradient based techniques1.

1In this work we are using the CMA-ES optimizer.
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Examples [Krefl et al., 2017]
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• Blue line: real
distribution

• Red line: RTBM

• Histogram: sample
from real distribution

Blue line: true distribution Red Line: RTBM
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Properties of RTBM [Carrazza and Krefl, 2018]

Over the last years we discoverd that the RTBM possesses a lot of nice properties.

Sampling
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We can easily extract samples from P (v) using
numerical evaluation of θ functions

Affine transformations
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P (v) stays in the same distribution under affine
transformations

w = Av + b , w ∼ PA,b(v) ,
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Limitations

Despite the promising results there is one major issue:

The learning process can become slow for (Nh > 5).

It is not possible to use RTBMs for:

• Complicated low-dimensional models • High dimensional models (Nh ≥ Nv)

Why this happens?

The computation of θ and its derivatives is a bottleneck for increasing value of Nh
2.

θ(z,Ω) :=
∑
n∈ZN

e2πi
(

1
2n

t
Ωn+n

t
z
)
.

2The computational times increase exponentially due to the computation of the exponential of a Nh ×Nh

matrix required by the θ function.
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Improving the RTBM



Factorizability [Pasquale et al., 2022 in preparation]

To speed up the calculation we can exploit the following property of the θ function:

Factorizability
Under the assumption that Ω is a complex diagonal N ×N matrix, whose imaginary part is
positive definite, the Riemann-Theta function θ(z,Ω) factorizes

θ(z,Ω) =

N∏
i=1

θ(zi,Ωii) (1)

Figure 2: Average time to compute the RT using Deconinck et al., 2002

• Important speed-up
as we increase N

• Computational times
almost costant
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Factorizability [Pasquale et al., 2022 in preparation]

Can we exploit the previous property directly on P (v)?

P (v) =

√
detT

(2π)Nv
e−

1
2v

t
Tv−B

t
v−B

t
vT

−1
Bv

θ̃(Bt
h + vtW |Q)

θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W )

.

We have to compute two θ function:

• θ̃(Bt
h + vtW |Q) can we take Q diagonal? Yes

• θ̃(Bt
h −Bt

vT
−1W |Q−W tT−1W ) Q−W tT−1W diagonal? not feasible

Obsv: the second term is a normalization term.

Idea: Can we select a specific cost function to avoid computing that term?
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Score Matching [Lyu, 2012]

A particular parameter learning methodology that can address this issue is Score Matching,
which is based on the Fisher divergence.

DF (p||qξ) =
∫

p(x)

∣∣∣∣∣∇x p(x)

p(x)
− ∇x q(x, ξ)

q(x, ξ)

∣∣∣∣∣
2

dx ,

which is slightly different from the Kullback-Leiber divergence:

DKL(p||qξ) =
∫

p(x) log
p(x)

q(x, ξ)
dx ,

We will show in the next slide that the normalization terms cancel out since

DF ∝ d(i)

dx(i)
log q(x, ξ)

Therefore if we start by assuming that Q is diagonal the learning process will involve only the
computation of 1d θ functions!
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Score Matching [Pasquale et al., 2022 in preparation]

We can simplify the expression for DF under the assumption that our model q(x, θ) is
sufficiently regular, which is the case of the RTBM.

DF (p||qθ) =
∫

p(x)

(∣∣∇x log q(x, θ)
∣∣2 + 2∆x log q(x, θ)

)
+ const

≈
∑N

i=1

∣∣∣∣∣∇vi
log q(vi, θ)

∣∣∣∣∣
2

+ 2∆vi
log q(vi, θ) + const .

≈ CF

We call CF Fisher cost function and it is particularly useful for non-normalizable models.
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Applications

In the following slides we show how the RTBM perform using empirical datasets.

� We start from low dimensional datasets and we want to generate more data: data
augmentation.

� To quantify the quality of the samples generated we use a 2-D implementation of the
Kolmogorov-Smirnov known as Fasano-Franceschini test.3.

� We compare the performance of this model with state-of-the-art density estimation
techniques such as Kernel Density Estimation 4 (KDE) and Normalizing Flows5 (NF).

3For more details about this multi-dimensional generalization of the KS test see Fasano and Franceschini, 1987.
4We use a gaussian kernel where the optimal bandwidth is selected after a hyperoptimization using a grid
search cross validation.
5For the NF we employ an architecture with rational-quadratic coupling transforms as in Durkan et al., 2019
trained using maximum likelihood estimation
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Uranium dataset [Pasquale et al., 2022 in preparation]

Figure 3: rRTBMs modelling the concentrations of Uranium and Cesium (first row), Cobalt and Titanium (second row)
and, Cesium and Scandium (third row) for Nh = 2, 4, 6 (left,center,right). The rRTBM contours and histograms of the
original data are shown.
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Uranium dataset [Pasquale et al., 2022 in preparation]
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Faithful dataset [Pasquale et al., 2022 in preparation]

Figure 4: rRTBMs trained to model the waiting time between eruptions and the duration of the eruption for the Old
Faithful geyser for Nh = 2 (top left), Nh = 4 (top right), Nh = 6 (bottom left) and Nh = 8 (bottom right). The curves
correspond to the rRTBM model and the gray histogram is obtained from the original data with 30 bins.
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Iris dataset [Pasquale et al., 2022 in preparation]

Figure 5: rRTBMs trained to model the joint distribution of sepal width and sepal length from the Iris dataset for Nh = 2

(top left), Nh = 4 (top right), Nh = 6 (bottom left) and Nh = 8 (bottom right). The curves correspond to the rRTBM
model and the gray histogram is obtained from the original data with 30 bins.
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Results [Pasquale et al., 2022 in preparation]

� The RTBM is the model with the lowest KS for the uranium dataset.

� In the other cases it is still competitive.

� We successfully generate more data (5000) starting from low-sized datasets (≈ 200 points)
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Conclusion



Outlook

In summary

• The RTBM is a valid model to perform density estimation even when Q is diagonal

• Using score matching we are able to train efficiently using large values of Nh

• Open source code soon available here: https://github.com/RiemannAI/theta

For the future

• Speed up the computation of the θ by moving to a GPU pr FPGA implementation

• Possibility to use this mechanism to perform MC multi-dimensional integration for physics
related problem

20
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Overfitting problems

A common downside Goodness of Fit test is the fact that they do not take into account the
complexity of the model.

KDE NFLOW RTBM

Is there a way to quantify the overfitting behavior of a model?

Fractal dimension!
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What is the fractal dimension?

We can associate a continuum dimension to lines and surfaces.

What happens when we apply this to the surface generate from the previous models?

� We can quantify the
overfitting in terms of
the fractal dimension.
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Gradients for RTBM [Pasquale et al., 2022 in preparation]

∂vi logP (v) = −(Tv)i − (Bv)i + (WD)i ,

∂2
vi
logP (v) = −Tii + (WHW t)ii + (WD)2i ,

with D the normalized gradient and H the normalized hessian

(D)i =
∇iθ̃(B

t
h + vtW |Q)

θ̃(Bt
h + vtW |Q)

, (H)ij =
∇i∇j θ̃(B

t
h + vtW |Q)

θ̃(Bt
h + vtW |Q)

.

If Q is diagonal

∂vi logP (v) = −(Tv)i − (Bv)i +

Nh∑
j=1

∂vi θ̃((B
t
h + vtW )j |Qjj)

θ̃((Bt
h + vtW )j |Qjj)

Wji ,

∂2
vi
logP (v) =− Tii +

Nh∑
j=1

∂2
vi
θ̃((Bt

h + vtW )j |Qjj)

θ̃((Bt
h + vtW )j |Qjj)

W 2
ji

−
Nh∑
j=1

(∂vi θ̃((B
t
h + vtW )j |Qjj))

2

θ̃((Bt
h + vtW )j |Qjj)

Wji .

The cost function can be evaluated using only 1d RT functions!
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Efficient calculation of the 1d RT [Pasquale et al., 2022 in preparation]

The computation of the RT and its derivatives is computationally challenging due to the
infinite sum over an N -dimensional integer lattice ZN

θ(z,Ω) :=
∑
n∈ZN

e2πi
(

1
2n

t
Ωn+n

t
z
)
.

For the multi-dimensional case we can obtain a numerical approximation by summing over an
finite subset of lattice points.

For the 1d case there exist more efficient methods. A possibility is to truncate the series:

θ(z,Ω) ≈ SB(z,Ω) = 1 +
∑

0<n<B

qn
2

(e2πinz + e−2πinz) =: 1 +
∑

0<n<B

vn .

It can be shown (see Labrande, 2015) that vn can be computed recursively, giving us a fast
algorithm to evaluate the RT in dim 1.

vn+1 = q2nv1vn − q4nvn−1 . (2)

where q = eiπΩ .
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What about the gradients? [Pasquale et al., 2022 in preparation]

To speed up the learning process for the RTBM we would like to have a similar algorithm for
the derivatives of the RT function. In our work he prove that this is possible:

d

dz
θ(z,Ω) ≈ UB(z,Ω) =

∑
1<n<B

−4πnqn
2

sin(2πnz) =:
∑

1<n<B

wn ,

d2

dz2
θ(z,Ω) ≈ VB(z,Ω) =

∑
1<n<B

−8π2n2qn
2

cos(2πnz) =:
∑

1<n<B

ξn .

After a few mathematical passages it can be shown that there exist a recurrence to compute
both wn and ξn.

wn+1 = (n+ 1)

[
2 cos(2πz)

n
q2n+1wn − q4n

n− 1
wn−1

]
,

ξn+1 = (n+ 1)2
[
2 cos(2πz)

n2 q2n+1ξn − 1

(n− 1)2
q4nξn−1

]
.
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Results [Pasquale et al., 2022 in preparation]
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Sampling algorithm [Carrazza and Krefl, 2018]

The probability for the visible sector can be expressed as:

P (v) =
∑
[h]

P (v|h)P (h) ,

where P (v|h) is a multivariate gaussian. P (v) can be
easily sampled using the following algorithm:

• sample h ∼ P (h) using RT numerical evaluation
θ = θn + ϵ(R) with ellipsoid radius R such that

p =
ϵ(R)

θn + ϵ(R)
≪ 1

is the probability that a point is sampled outside the
ellipsoid of radius R, while∑

[h](R)

P (h) =
θn

θn + ϵ(R)
≈ 1 ,

is the sum over the lattice points inside the ellipsoid.

• sample v ∼ P (v|h)
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Sampling examples [Carrazza and Krefl, 2018]

One dimensional case:
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Multi-dimensional case
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• Blue line: Real distribution

• Red line: RTBM

• Histogram: sample from RTBM
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Affine Transformations [Carrazza and Krefl, 2018]

We observe that P (v) stays in the same
distribution under affine transformations, i.e.
rotation and translation

w = Av + b , w ∼ PA,b(v) ,

if the linear transformation A has a full column
rank. The connection matrices and the biases
of the transformed RTBM are given by:

T−1 → AT−1At , Bv → (A+)tBv − Tb ,

W → (A+)tW , Bh → Bh −W tb .

where A+ is the left pseudo-inverse defined as

A+ = (AtA)−1At .

Example: rotation of θ/4 and scaling of 1/2
(Nv = 2, Nh = 2)
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