

# Performance of modern color decompositions for standard candle LHC tree amplitudes

Max Knobbe ACAT-2022

In collaboration with:

E. Bothmann, T. Childers, W. Giele, S. Höche, J. Isaacson, R. Wang





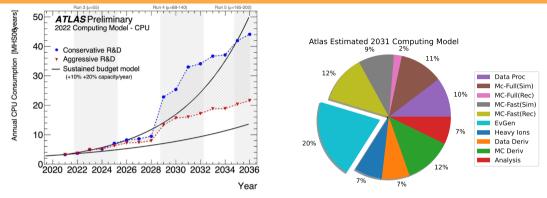
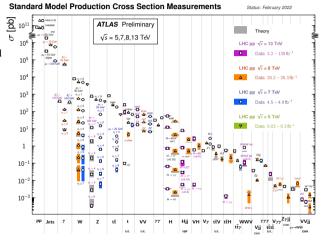



Figure and numbers taken from [CERN-LHCC-2022-005]

- Computing needs are predicted to grow faster than available resources
  - → Computing budget might limit physics outcome
- Sizeable part of CPU budget spend on event generation (roughly 20%)

#### Expensive MC Samples: V+Jets with many jets


 Background to essential analysis(es), e.g. Higgs-boson and top-quark measurements

#### cf. [2112.09588]

- Large production cross-section → large MC samples
- To reduce significant portion of MC budget, ensure to be efficient for these processes

#### Guiding Principles for the following discussion:

- Good performance for bottleneck processes (for now: V+Jets,ttbar), in particular for many jets!
- Deployable in modern architectures
- Useful integration in existing MC tool-chain



twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults

$$\sigma_{pp\to X_n} = \sum_{ab} \int dx_a dx_b d\phi_n f_a(x_a, \mu_F^2) f_b(x_b, \mu_F^2)$$
$$\times |\mathcal{M}_{ab\to X_n}|^2 \Theta(p_1, ..., p_n)$$

- Large portion of MC time spend in ME + PS cf. [2209,00843] C. Gütschow's talk
- In this talk: Re-think ME stratgy
- Goal: Develop efficient strategy for the different components
- Naive treatment of helicity/color sum scales terribly with increase of multiplicity

$$|\mathcal{M}_{ab \to X_n}(1,...,n)|^2 = \sum_{\text{helicity color}} A(p_1,...,p_n) A(p_1,...,p_n)^{\dagger}$$

Three major components we have to take care of are

- The helicity sum
- 2 The amplitudes
- The color sum

clustering phase space

35 %

tree-level ME

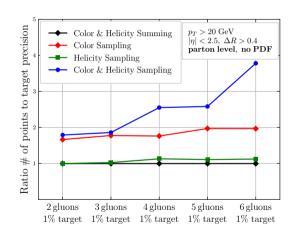
16 %

rest+overhead

 $pp \rightarrow e^{+}e^{-}+0.1.2i@NLO+3.4.5i@LO$ 

cf. Talk by C. Gütschow, or [2209.00843]

loop ME


PDF

## 1<sup>st</sup> Component: The Helicity Sum

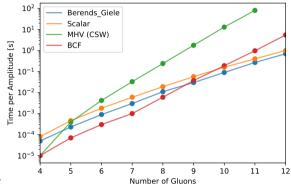
## Investigate impact of helicity-summing vs. sampling on convergence

→ How many points to we have to compute to make up for MC estimate?

- Helicity sampling comes with close to zero additional points
- Loss in precision increases with multiplicity for color and helicity sampling
- $\Rightarrow$  Algorithmic choice: Sample helicities



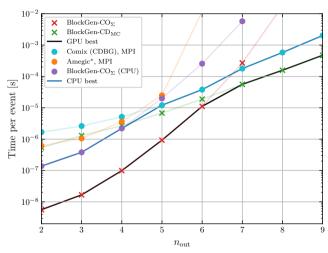
[Bothmann, Giele, Höche, Isaacson, MK, 2106.06507]


## 2<sup>nd</sup> Component: The Amplitudes

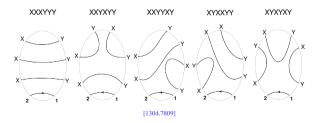
- Different strategies to compute tree-level amplitudes efficiently
  - Berends-Giele like recursion
  - Scalar
  - MHV (CSW)
  - BCF
- Rely on performance studies from early 2000's hep-ph/0602204,hep-ph/0607057
- We are interested in best scaling behaviour / performance for multi-jet processes (guiding principles)

Best scaling option is the Berends-Giele recursion

⇒ Algorithmic choice: Berends-Giele recursion


NB: BCF-like recursions show potential for intermediate multiplicites, dominant effect from (N)MHV amplitudes that can be included in current generator

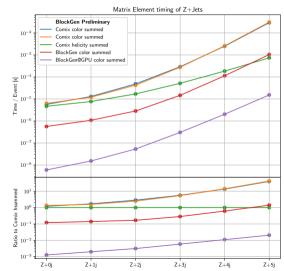



Based on numbers from hep-ph/0602204

- Benchmark performance for gluon-only process
- Relevant test, since as-many-gluon-as-possible amplitudes make up largest portion of computing time for jet-processes
- Compare different color treatments: color-dressing/summing/sampling
- Color-sampled algorithms scale similar to color-summed approaches
- Color-summing scales worse than color-dressing, but faster up to roughly 5-6 outgoing jets
- Caveat: Color-sampling comes with penalty factor from slower convergence

### ⇒ Algorithmic choice: Sum colors




- Introduce spinors (Weyl for massless, Dirac for massive particles)
- Add more general QCD three point vertices
- Straight-forward for helicity-sum and Berends-Giele recursion
- First time in a code aimed for production: use minimal QCD color-basis
  - [T. Melia 1304,7809 & 1312,0599 & 1509,03297; H. Johansson, A. Ochirov, 1507,00332]
  - → Allows to fix one fermion line, remaining permutations are given by Dyck-Words
  - → Significantly less amplitudes to compute
- Need to treat process groups (next slide)



- Straight-forward for helicity-sum and Berends-Giele recursion
- Introduces helicity dependant vertices / coupling
- But: can be quite complicated, if number of EW-vertices is not restricted
   → Start with lowest order first
- Only remaining caveat: Color ordering introduced color-ordered vertices, amplitudes
  - → Carefull when attaching EW lines to QCD ones

## Relevant benchmark process: $pp \rightarrow Z[ee] + nj$

- Realistic setup for ME computations
  - $\rightarrow$  Include all sub-processes, no PDF
  - → Dominated by as-many-as-possible
- Compare dedicated C++ Version with dedicated Cuda version
- PS: Rambo
- CPU: i3-8300 CPU @ 3.70GHz, GPU: Tesla V100S
- Excellent performance compared to current Sherpa-Standard
- Almost three orders of magnitude for lower multiplicities (single CPU core vs full GPU)



#### Basic building blocks:

- T-channel phase-space generator from MCFM [Figy, Giele 1806.09678]
- S-channel phase-space factorization and decays [Byckling, Kajantie NPB9(1969)568]
- Variable number of s-channel decays (user-defined) to eliminate exponential scaling

Performance within Sherpa, compared to Comix [Gleisberg, Höche 0808 3674]

| • | marie within one pa, compared to commit [decisions, notice soon |                                                           |       |         |       |           |                                                                       |       |         |       |  |
|---|-----------------------------------------------------------------|-----------------------------------------------------------|-------|---------|-------|-----------|-----------------------------------------------------------------------|-------|---------|-------|--|
|   | Process /                                                       | Default PS                                                |       | New PS  |       | Process / | Default PS                                                            |       | New PS  |       |  |
|   | MC accu                                                         | Time                                                      | # pts | Time    | # pts | MC accu   | Time                                                                  | # pts | Time    | # pts |  |
|   | W+1j / 1‰                                                       | 4m 52s                                                    | 10.3M | 2m 32s  | 3.10M | H+1j / 1‰ | 2m 20s                                                                | 1.83M | 1m 36s  | 1.50M |  |
|   | W+2j / 3‰                                                       | 17m 12s                                                   | 5.52M | 13m 52s | 2.53M | H+2j / 3‰ | 4m 36s                                                                | 2.32M | 4m 4s   | 0.71M |  |
|   | W+3j / 1%                                                       | 46m 24s                                                   | 7.48M | 20m 16s | 1.15M | H+3j / 1% | 18m 12s                                                               | 2.32M | 12m 56s | 0.63M |  |
|   |                                                                 | Xeon® E5-2650v2, timing for ME & PS, # points before cuts |       |         |       |           | Xeon® E5-2650v2, timing for ME & PS, # points before cuts, H on-shell |       |         |       |  |

 $\sqrt{s} = 14$ TeV, anti- $k_T$ ,  $p_{T,i} = 30$ GeV,  $\mu_{B/F} = H_T'/2$ 

| Process /           | Defau   | lt PS | New PS  |       |  |
|---------------------|---------|-------|---------|-------|--|
| MC accu             | Time    | # pts | Time    | # pts |  |
| $t\bar{t}$ +0j / 1‰ | 4m 38s  | 3.15M | 4m 0s   | 3.59M |  |
| $t\bar{t}$ +1j / 3‰ | 3m 12s  | 1.38M | 3m 4s   | 1.47M |  |
| $tar{t}$ +2j / 1%   | 11m 58s | 1.47M | 11m 20s | 0.89M |  |

Xeon® E5-2650v2, timing for ME & PS, # points before cuts  $\sqrt{s} = 14$ TeV, anti- $k_T$ ,  $p_{T,i} = 30$ GeV,  $\mu_{B/F} = H_{T,m}/2$ 

| $\sqrt{s} = 1410$ , and $\pi_T, p_{T,j} = 3000$ , $\mu_R/F = 11T, m/2$ |         |       |         |       |  |  |  |
|------------------------------------------------------------------------|---------|-------|---------|-------|--|--|--|
| Process /                                                              | Defaul  | lt PS | New PS  |       |  |  |  |
| MC accu                                                                | Time    | # pts | Time    | # pts |  |  |  |
| 2j / 1‰                                                                | 12m 48s | 2.98M | 7m 44s  | 1.80M |  |  |  |
| 3j / 3‰                                                                | 22m 48s | 6.80M | 23m 12s | 2.39M |  |  |  |
| 4j / 1%                                                                | 1h 25m  | 6.95M | 50m 24s | 0.91M |  |  |  |

Xeon<sup>®</sup> E5-2650v2, timing for ME & PS, # points before cuts  $\sqrt{s} = 14$ TeV, anti- $k_T$ ,  $p_{T,j} = 30$ GeV,  $\mu_{R/F} = H_T/2$ 

- BlockGen matrix-elements show excellent performance on both CPU and GPU
  - ▶ Helps to reduce CPU time consumption but also enables more/complicated computations and use of modern GPU data-centers
- CPU Speed-up  $\mathcal{O}(10)$ , GPU Speed-up  $\mathcal{O}(100)$ 
  - ► Color-summing/helicity sampling good choice for intermediate to high multiplicities
  - ▶ No process-specific optimisations → straight-forward extension to more processes
  - ▶ Potentially need some more fine-tuning of Cuda version
- Eventual goal: parton-level generator that delivers seed events to SHERPA for further processing
  - ▶ Proposed workflow, (ME,PS)@GPU, (Shower,Hadronisation,MPI,...)@CPU using HDF5 I/O [Höche, Prestel, Schulz 1905.05120]
  - ▶ Need to complete combination with PS-Integrator
  - ► Add unweighting & HDF5 event output
    - → Nearing usable product, natural inclusion in current toolchain