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Event Generators for LHC Simulation

● Event Generators implement the perturbative QCD calculations and use Monte 
Carlo methods to generate particle interactions.

● They are the first step in the simulation chain for collider experiments.

Fig Ref

https://www.frontiersin.org/articles/10.3389/fdata.2021.661501/full
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Motivation
● The needs of the computing resources 

grows rapidly when moving into the HL-LHC 
era

● Could only stay within the budget under the 
Aggressive R&D scenario – ATLAS 
HL-LHC Computing CDR

○ Reduce the per event generation time 
○ Utilize GPU resources besides the CPUs

● Modern architecture environment includes 
many different configurations of hardware, 
portable software helps alleviate the need 
for rewriting algorithms for each.

● In the future every geographic region
will have their own custom chips.

Fugaku

https://inspirehep.net/literature/1845103
https://inspirehep.net/literature/1845103
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Brief Intro to Blockgen Algorithm
● Matrix Element (ME) calculation represents 

most of the computing time spent in 
precision event generation.

● We studied a new set of fast algorithms for 
ME calculation
○ Helicity sum, amplitudes and color sum
○ Details in Max’s talk in this session

● Implemented in CUDA for early tests
● Here the improvements can be seen in one 

of the costliest processes for LHC event 
generation: V + Nout jets

● Compares with existing CPU codes (Comix, 
Amegic)

● Shows factor ~10 speedup at low particle 
multiplicity, factor ~4 at high multiplicity. 
(with fully loaded CPU and GPU)

arXiv:2106.0650

git repo

https://indico.cern.ch/event/1106990/contributions/4997238/
https://arxiv.org/abs/2106.06507
https://www.gitlab.com/ebothmann/blockgen-archive
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● Kokkos was used largely based on experience and evidence of achievable performance and 
portability

● Kokkos offers abstracted, templated memory management, and parallel kernel launching
● It is an Exascale project funded by US-DOE, not aligned to any particular industry hardware.
● Our codes are written by physics theorists, not software engineers, making readability very 

important.
● DOE HEP-CCE has presented on portability frameworks [ref] Poster at ACAT 

Portability with Kokkos
As of March 2022● Writing code in CUDA only 

runs on NVidia GPUs
● Abstraction libraries like 

Kokkos, Alpaka, Sycl [Intel] 
provides portability for the 

● Same code to be run on both 
CPU and GPU with  
Reasonable performance 
compared to the native 
language

https://arxiv.org/abs/2203.09945
https://indico.cern.ch/event/1106990/contributions/4991347/
https://arxiv.org/abs/2203.09945
https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/


Argonne Leadership Computing Facility6

Example of Kokkos Abstraction 
● Kokkos offers a memory management abstraction called a View class:

● Kokkos offers methods for running parallel algorithms:
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Event Throughput vs Parallel Threads

● Measure the event throughput with various combinations of threads*blocks on different 
hardware.

● The plateau is easily identified on the NVidia V100 (left) and A100 (right)
○ GPU is fully filled at this point

NVidia V100
W+4jets*

NVidia A100
ttbar+4jets

* Note: all jets mentioned in this talk are gluon jets
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Event Throughput vs Parallel Threads

● Measure the event throughput with various combinations of threads*blocks on different hardware.
● The plateau is easily identified on the AMD MI100 (left) and Intel Skylake (right) as well

○ The plateau is majorly based on the No. of threads/block rather than the total threads in case of 
the Skylake

● The peak varies based on the process and hardware

AMD MI100
W+4jets

Intel Skylake
W+4jets
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Performance of Kokkos
● So, does Kokkos provide equivalent 

performance?
● Plot shows early versions of BlockGen 

calculating the process:  gg→njets
● Time per Event on y-axis, number of 

outgoing partons on x-axis
● Compare CPU with C++, GPU with CUDA, 

and GPU with Kokkos
● Can see the CUDA is 100x faster than the 

CPU for this example
● Kokkos is slightly less performant than 

CUDA at low multiplicity (low computational 
complexity), but reaches comparable 
performance as multiplicity increases.

gg → n-jets
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Hardware Comparison 
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Kokkos Performance● Tested Kokkos implementation 
with benchmarking processes

○ ttbar + jets & W+jets
● Kokkos with CUDA backend on 

Nvidia GPUs
● Kokkos with OpenMP backend 

on AMD and Intel CPUs
● Kokkos with ROCM/HIP 

backend on AMD GPUs
● Used the serial C++ algorithm 

run with MPI to fill a Skylake for 
comparison to original

● Caveat: no time has yet been 
spent studying differences
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Hardware Comparison
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Kokkos Performance

Dependence on the 
complexity of the process

● Tested Kokkos implementation 
with benchmarking processes

○ ttbar + jets & W+jets
● Kokkos with CUDA backend on 

Nvidia GPUs
● Kokkos with OpenMP backend 

on AMD and Intel CPUs
● Kokkos with ROCM/HIP 

backend on AMD GPUs
● Used the serial C++ algorithm 

run with MPI to fill a Skylake for 
comparison to original

● Caveat: no time has yet been 
spent studying differences
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Hardware Comparison
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Kokkos Performance

Comparable performance when 
moving to high jet multiplicity

● Tested Kokkos implementation 
with benchmarking processes

○ ttbar + jets & W+jets
● Kokkos with CUDA backend on 

Nvidia GPUs
● Kokkos with OpenMP backend 

on AMD and Intel CPUs
● Kokkos with ROCM/HIP 

backend on AMD GPUs
● Used the serial C++ algorithm 

run with MPI to fill a Skylake for 
comparison to original

● Caveat: no time has yet been 
spent studying differences
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Summary
● New Algorithms that can utilize accelerators 

for HEP simulation are needed to achieve the 
scientific goals of the LHC in a timely fashion.

● Blockgen is such an algorithm.
● Kokkos offered a relatively pain free method 

for writing physics algorithms that run on 
multiple architectures and maintain reability.

● While the performance of Kokkos may not be 
equal to native frameworks, it gets within 10% 
in the computationally intensive algorithms.

● Kokkos is not an industry product, it comes 
from the HPC scientific community and can be 
extended as needed to support future 
architectures.
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Next Steps
● The Matrix Element calculations have been 

ported to Kokkos
● The performance will be investigated in 

collaboration with the Kokkos developers 
who are very helpful.

● Now we need to integrate these into a proper 
Leading-Order Event Generator.
○ This work is largely done on the C++ 

side.
● Physics validation
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Backups
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Z→ee (+gluon jet)
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ttbar (+gluon jets)
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Kokkos vs CUDA vs CPU – latest BlockGen version
● Compare CPU with C++, GPU with 

CUDA, and GPU with Kokkos
● Can see the CUDA is ~10 – 100 times 

faster than the CPU for this example
● Kokkos has a negligible overhead 

comparing to CUDA at low multiplicity 
(low computational complexity), but 
reaches comparable performance as 
multiplicity increases.


