
Developments in Performance
and Portability of BlockGen
J. Taylor Childers1, Rui Wang1

Enrico Bothmann2, Max Knobbe2

Stefan Hoeche3, Joshua Isaacson3

1. Argonne National Laboratory
2. University of Göttingen
3. Fermilab

21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research

October 24, 2022

Work Done in association with the DOE

High Energy Physics Center for Computational Excellence

Argonne Leadership Computing Facility2

Event Generators for LHC Simulation

● Event Generators implement the perturbative QCD calculations and use Monte
Carlo methods to generate particle interactions.

● They are the first step in the simulation chain for collider experiments.

Fig Ref

https://www.frontiersin.org/articles/10.3389/fdata.2021.661501/full

Argonne Leadership Computing Facility3

Motivation
● The needs of the computing resources

grows rapidly when moving into the HL-LHC
era

● Could only stay within the budget under the
Aggressive R&D scenario – ATLAS
HL-LHC Computing CDR

○ Reduce the per event generation time
○ Utilize GPU resources besides the CPUs

● Modern architecture environment includes
many different configurations of hardware,
portable software helps alleviate the need
for rewriting algorithms for each.

● In the future every geographic region
will have their own custom chips.

Fugaku

https://inspirehep.net/literature/1845103
https://inspirehep.net/literature/1845103

Argonne Leadership Computing Facility4

Brief Intro to Blockgen Algorithm
● Matrix Element (ME) calculation represents

most of the computing time spent in
precision event generation.

● We studied a new set of fast algorithms for
ME calculation
○ Helicity sum, amplitudes and color sum
○ Details in Max’s talk in this session

● Implemented in CUDA for early tests
● Here the improvements can be seen in one

of the costliest processes for LHC event
generation: V + Nout jets

● Compares with existing CPU codes (Comix,
Amegic)

● Shows factor ~10 speedup at low particle
multiplicity, factor ~4 at high multiplicity.
(with fully loaded CPU and GPU)

arXiv:2106.0650

git repo

https://indico.cern.ch/event/1106990/contributions/4997238/
https://arxiv.org/abs/2106.06507
https://www.gitlab.com/ebothmann/blockgen-archive

Argonne Leadership Computing Facility5

● Kokkos was used largely based on experience and evidence of achievable performance and
portability

● Kokkos offers abstracted, templated memory management, and parallel kernel launching
● It is an Exascale project funded by US-DOE, not aligned to any particular industry hardware.
● Our codes are written by physics theorists, not software engineers, making readability very

important.
● DOE HEP-CCE has presented on portability frameworks [ref] Poster at ACAT

Portability with Kokkos
As of March 2022● Writing code in CUDA only

runs on NVidia GPUs
● Abstraction libraries like

Kokkos, Alpaka, Sycl [Intel]
provides portability for the

● Same code to be run on both
CPU and GPU with
Reasonable performance
compared to the native
language

https://arxiv.org/abs/2203.09945
https://indico.cern.ch/event/1106990/contributions/4991347/
https://arxiv.org/abs/2203.09945
https://github.com/kokkos/kokkos
https://github.com/alpaka-group/alpaka
https://www.khronos.org/sycl/

Argonne Leadership Computing Facility6

Example of Kokkos Abstraction
● Kokkos offers a memory management abstraction called a View class:

● Kokkos offers methods for running parallel algorithms:

Argonne Leadership Computing Facility7

Event Throughput vs Parallel Threads

● Measure the event throughput with various combinations of threads*blocks on different
hardware.

● The plateau is easily identified on the NVidia V100 (left) and A100 (right)
○ GPU is fully filled at this point

NVidia V100
W+4jets*

NVidia A100
ttbar+4jets

* Note: all jets mentioned in this talk are gluon jets

Argonne Leadership Computing Facility8

Event Throughput vs Parallel Threads

● Measure the event throughput with various combinations of threads*blocks on different hardware.
● The plateau is easily identified on the AMD MI100 (left) and Intel Skylake (right) as well

○ The plateau is majorly based on the No. of threads/block rather than the total threads in case of
the Skylake

● The peak varies based on the process and hardware

AMD MI100
W+4jets

Intel Skylake
W+4jets

Argonne Leadership Computing Facility9

Performance of Kokkos
● So, does Kokkos provide equivalent

performance?
● Plot shows early versions of BlockGen

calculating the process: gg→njets
● Time per Event on y-axis, number of

outgoing partons on x-axis
● Compare CPU with C++, GPU with CUDA,

and GPU with Kokkos
● Can see the CUDA is 100x faster than the

CPU for this example
● Kokkos is slightly less performant than

CUDA at low multiplicity (low computational
complexity), but reaches comparable
performance as multiplicity increases.

gg → n-jets

Argonne Leadership Computing Facility10

Hardware Comparison

cu
da

-1
1.

6

cu
da

-1
1.

4

AMD E
PYC

AMD M
I10

0

Int
el

Sky
lak

e

Int
el

Sky
lak

e

(se
ria

l +
 m

pi)

Int
el

Silv
er

NVidi
a A

10
0

NVidi
a V

10
0

Kokkos Performance● Tested Kokkos implementation
with benchmarking processes

○ ttbar + jets & W+jets
● Kokkos with CUDA backend on

Nvidia GPUs
● Kokkos with OpenMP backend

on AMD and Intel CPUs
● Kokkos with ROCM/HIP

backend on AMD GPUs
● Used the serial C++ algorithm

run with MPI to fill a Skylake for
comparison to original

● Caveat: no time has yet been
spent studying differences

Argonne Leadership Computing Facility11

Hardware Comparison

AMD E
PYC

AMD M
I10

0

Int
el

Sky
lak

e

Int
el

Sky
lak

e

(se
ria

l +
 m

pi)

Int
el

Silv
er

NVidi
a A

10
0

NVidi
a V

10
0

Kokkos Performance

Dependence on the
complexity of the process

● Tested Kokkos implementation
with benchmarking processes

○ ttbar + jets & W+jets
● Kokkos with CUDA backend on

Nvidia GPUs
● Kokkos with OpenMP backend

on AMD and Intel CPUs
● Kokkos with ROCM/HIP

backend on AMD GPUs
● Used the serial C++ algorithm

run with MPI to fill a Skylake for
comparison to original

● Caveat: no time has yet been
spent studying differences

Argonne Leadership Computing Facility12

Hardware Comparison

AMD E
PYC

AMD M
I10

0

Int
el

Sky
lak

e

Int
el

Sky
lak

e

(se
ria

l +
 m

pi)

Int
el

Silv
er

NVidi
a A

10
0

NVidi
a V

10
0

Kokkos Performance

Comparable performance when
moving to high jet multiplicity

● Tested Kokkos implementation
with benchmarking processes

○ ttbar + jets & W+jets
● Kokkos with CUDA backend on

Nvidia GPUs
● Kokkos with OpenMP backend

on AMD and Intel CPUs
● Kokkos with ROCM/HIP

backend on AMD GPUs
● Used the serial C++ algorithm

run with MPI to fill a Skylake for
comparison to original

● Caveat: no time has yet been
spent studying differences

Argonne Leadership Computing Facility13

Summary
● New Algorithms that can utilize accelerators

for HEP simulation are needed to achieve the
scientific goals of the LHC in a timely fashion.

● Blockgen is such an algorithm.
● Kokkos offered a relatively pain free method

for writing physics algorithms that run on
multiple architectures and maintain reability.

● While the performance of Kokkos may not be
equal to native frameworks, it gets within 10%
in the computationally intensive algorithms.

● Kokkos is not an industry product, it comes
from the HPC scientific community and can be
extended as needed to support future
architectures.

Argonne Leadership Computing Facility14

Next Steps
● The Matrix Element calculations have been

ported to Kokkos
● The performance will be investigated in

collaboration with the Kokkos developers
who are very helpful.

● Now we need to integrate these into a proper
Leading-Order Event Generator.
○ This work is largely done on the C++

side.
● Physics validation

Argonne Leadership Computing Facility15

Acknowledgements
We gratefully acknowledge the computing resources provided and operated by the Joint
Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

This research used resources of the Argonne Leadership Computing Facility, which is a DOE
Office of Science User Facility supported under Contract DE-AC02-06CH11357.

This work was supported by the US Dept. of Energy’s Office of HEP Center for Computational
Excellence.

Argonne Leadership Computing Facility16

Backups

Argonne Leadership Computing Facility17

Z→ee (+gluon jet)

Argonne Leadership Computing Facility18

ttbar (+gluon jets)

Argonne Leadership Computing Facility19

Kokkos vs CUDA vs CPU – latest BlockGen version
● Compare CPU with C++, GPU with

CUDA, and GPU with Kokkos
● Can see the CUDA is ~10 – 100 times

faster than the CPU for this example
● Kokkos has a negligible overhead

comparing to CUDA at low multiplicity
(low computational complexity), but
reaches comparable performance as
multiplicity increases.

