Conditional Normalizing Flow for Lattice Field Theory

21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research

Ankur Singha, PhD Scholar, **Dept. of Physics, IIT Kanpur, India**

INTRODUCTION

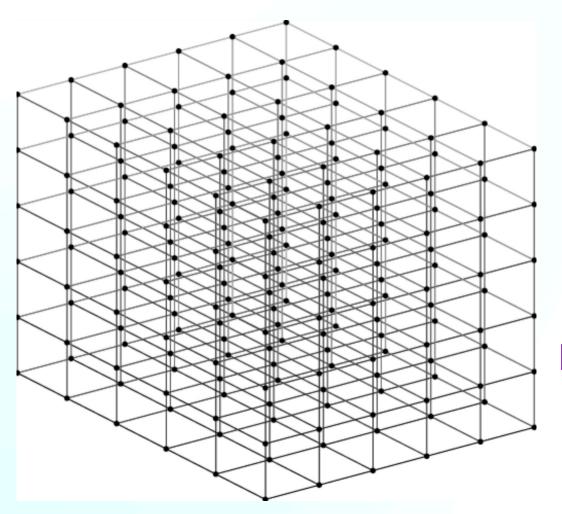
Quantum Field Theory describes physical world at the smallest scales.

Theory: defined by Action or Lagrangian;

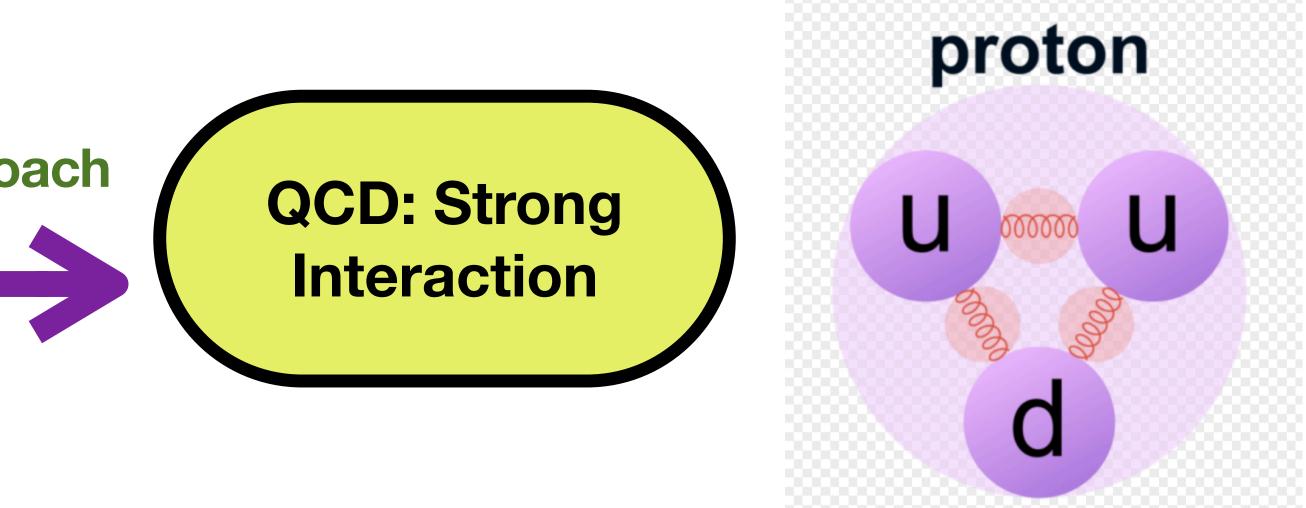
Strong Coupling

Lattice Field Theory

Discrete space time



Computational approach

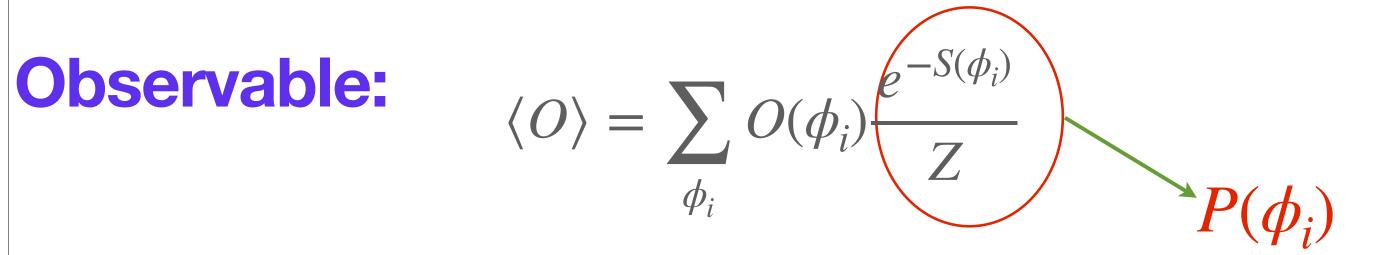


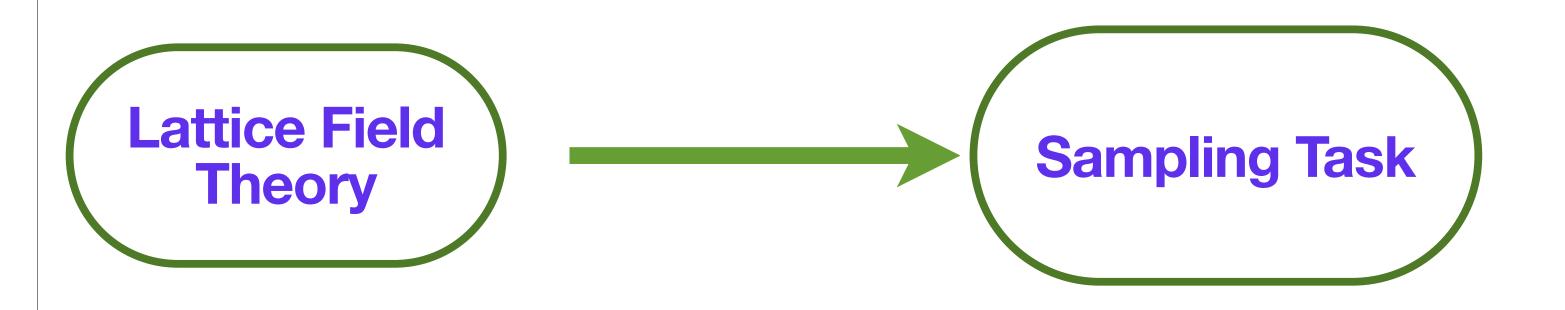
Scalar Lattice Field Theory

Discretized lattice Action:

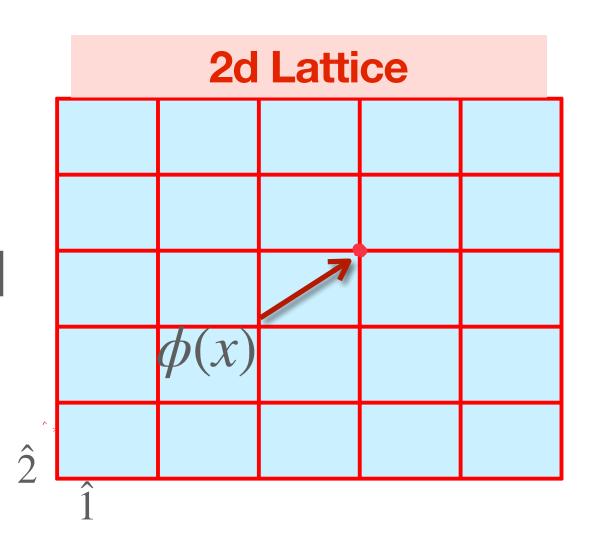
$S[\phi, m, \lambda] = \sum \sum [(2+m)\phi^2(x) - \phi(x)\phi(x+a\hat{\mu})$ *x* $\mu = 1,2$

where, *m* and λ are the parameters of the theory.

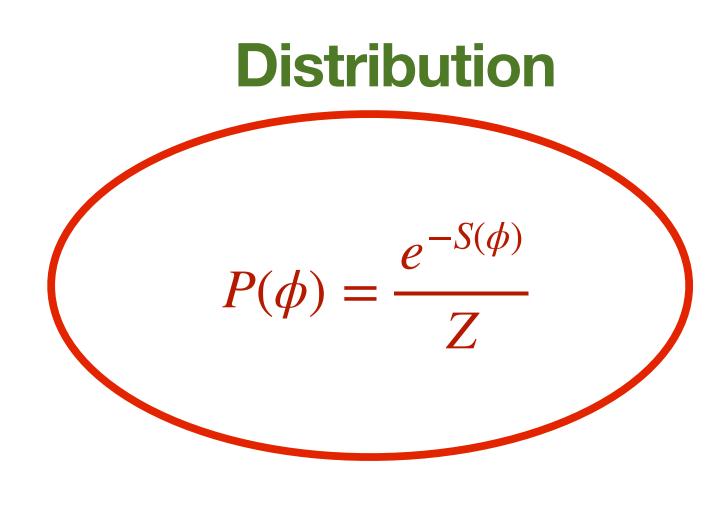




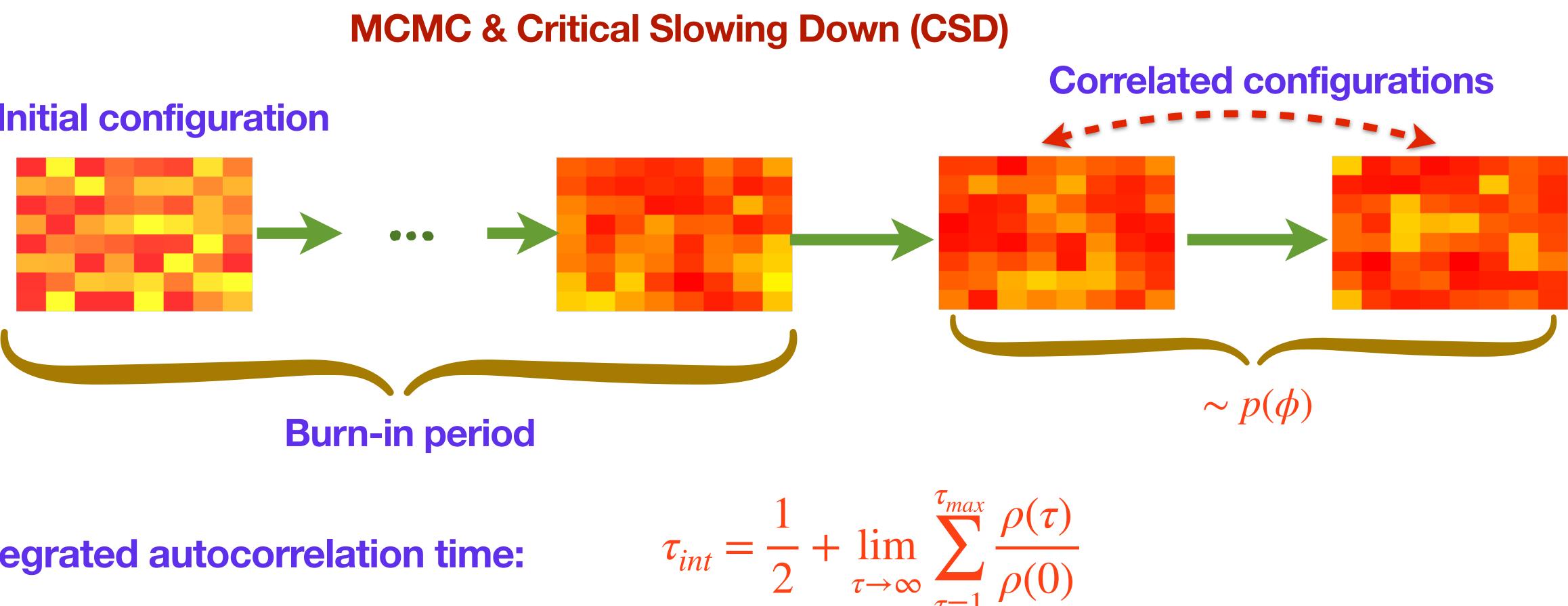
$$) - \phi(x)\phi(x - a\hat{\mu}) + \lambda\phi^4(x)$$



$$x \to (x_1 \hat{\mu}, x_2 \hat{\nu})$$



Initial configuration



Integrated autocorrelation time:

For a lattice action :

 $S(\phi, m_{fixed}, \lambda)$

τ_{int} Divergent, CSD dominates

ML based methods for Sampling

Generative Adversarial Network (GAN): •

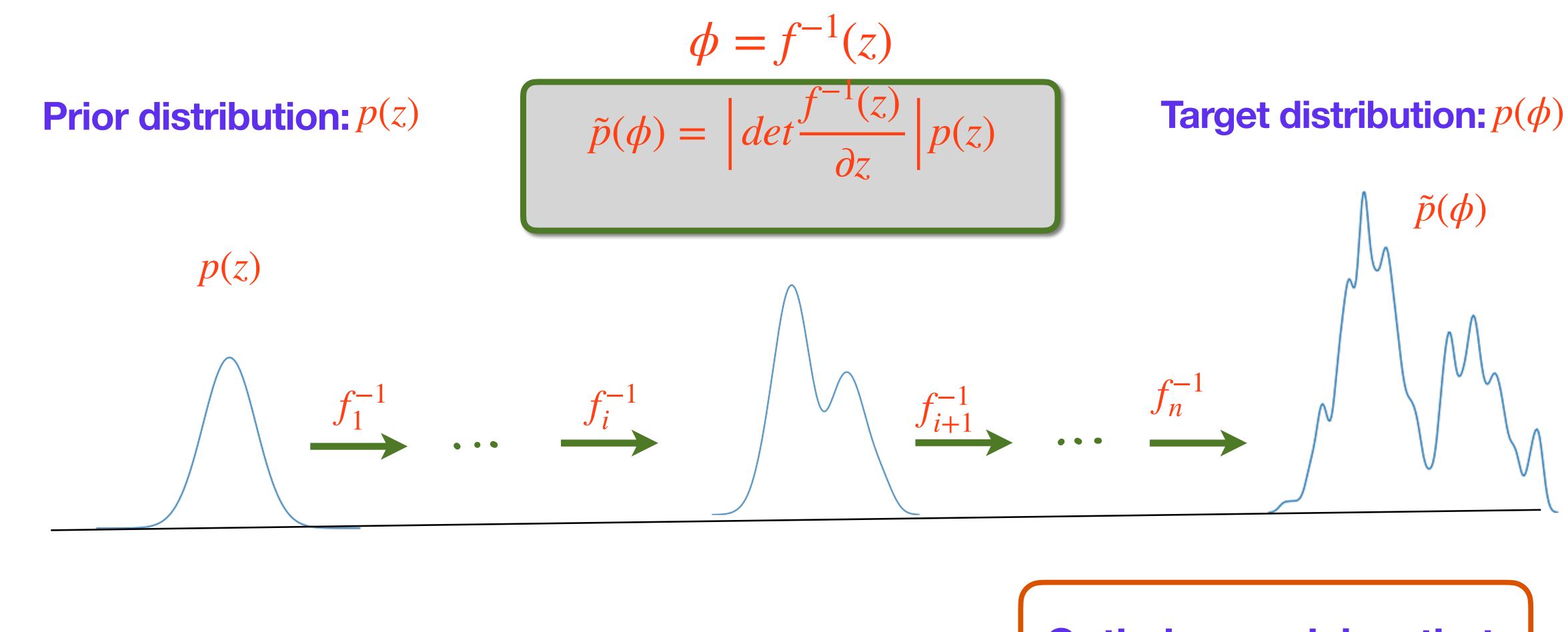
- **Normalizing Flow (NF):** **
 - and generates new unseen data.

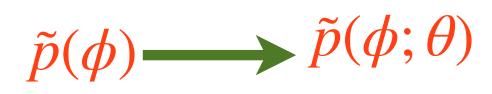
We can estimates the density explicitly.

Learns a distribution from training samples and generates new unseen data. Can not estimates the density explicitly.

Learns a distribution without any samples as well as with training samples

Normalising Flow





Optimise model so that: $\tilde{p}(\phi; \theta) \approx p(\phi)$

Training the NF model can done by minimizing the KL divergence between the $\tilde{p}(\phi; \theta)$ and $p(\phi)$.

Forward KL: 0

Reverse KL: 0

 $\mathscr{L}_F = D_{KL}(\tilde{p}(\phi;\theta) | | p(\phi)).$

Normalising Flow

Application to lattice phi4 theory

Phi4 theory: m and λ fixed. $S[\phi, m, \lambda] = \sum \left[(2+m)\phi^{2}(x) - \phi(x)\phi(x+a\hat{\mu}) - \phi(x)\phi(x-a\hat{\mu}) + \lambda\phi^{4}(x) \right]$ *x* $\mu = 1,2$

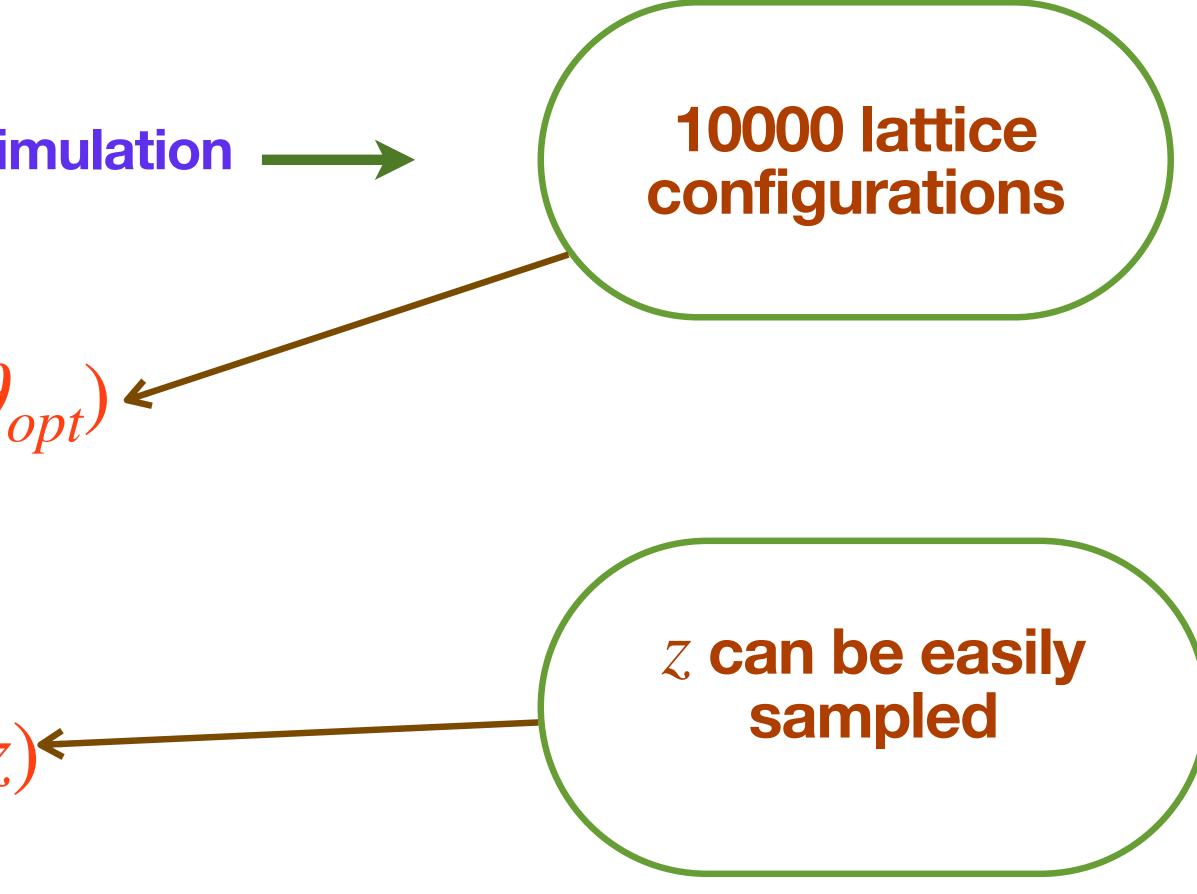
Generates training data from HMC simulation ———

Training the model

 $z = f(\phi; \theta_{opt}) \leftarrow$

Generation of lattices

 $\phi = f^{-1}(z)^{\epsilon}$



Metropolis-Hastings

calculation.

chain.

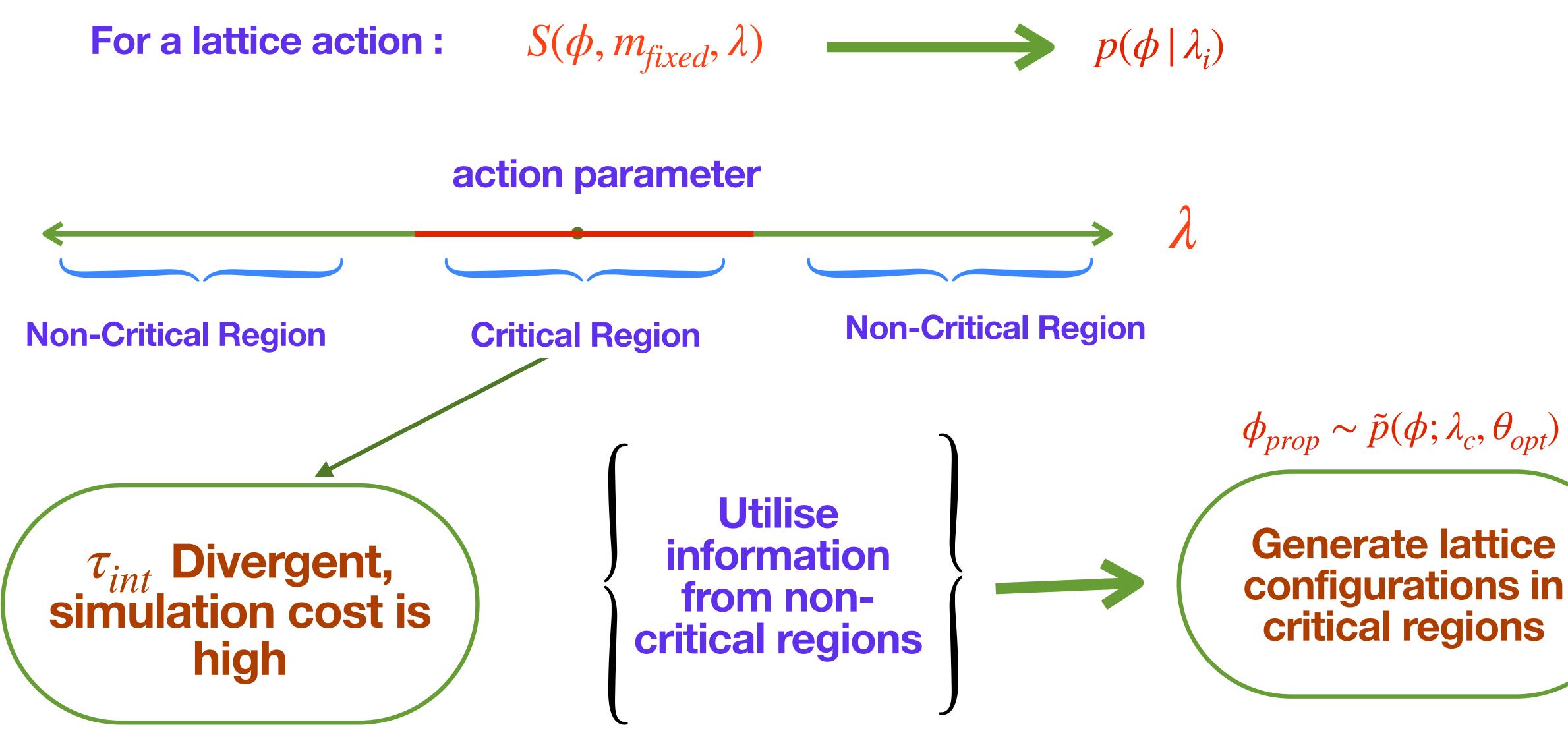
A(q**Metropolis-Hastings step:**

- Samples from the NF model $\tilde{p}(\phi; \theta)$ cannot be considered for observable
 - Cause: Biases in observable.
- We use the samples from NF model as proposal to construct a Markov

$$\phi^{i-1}, \phi') = \min(1, \frac{\tilde{p}(\phi^{(i-1)})p(\phi')}{p(\phi^{(i-1)})\tilde{p}(\phi')})$$

Provides the exactness of the distribution.

Simulation at multiple λ values



We studied two cases:

* Interpolation: generates samples on both sides of critical region.

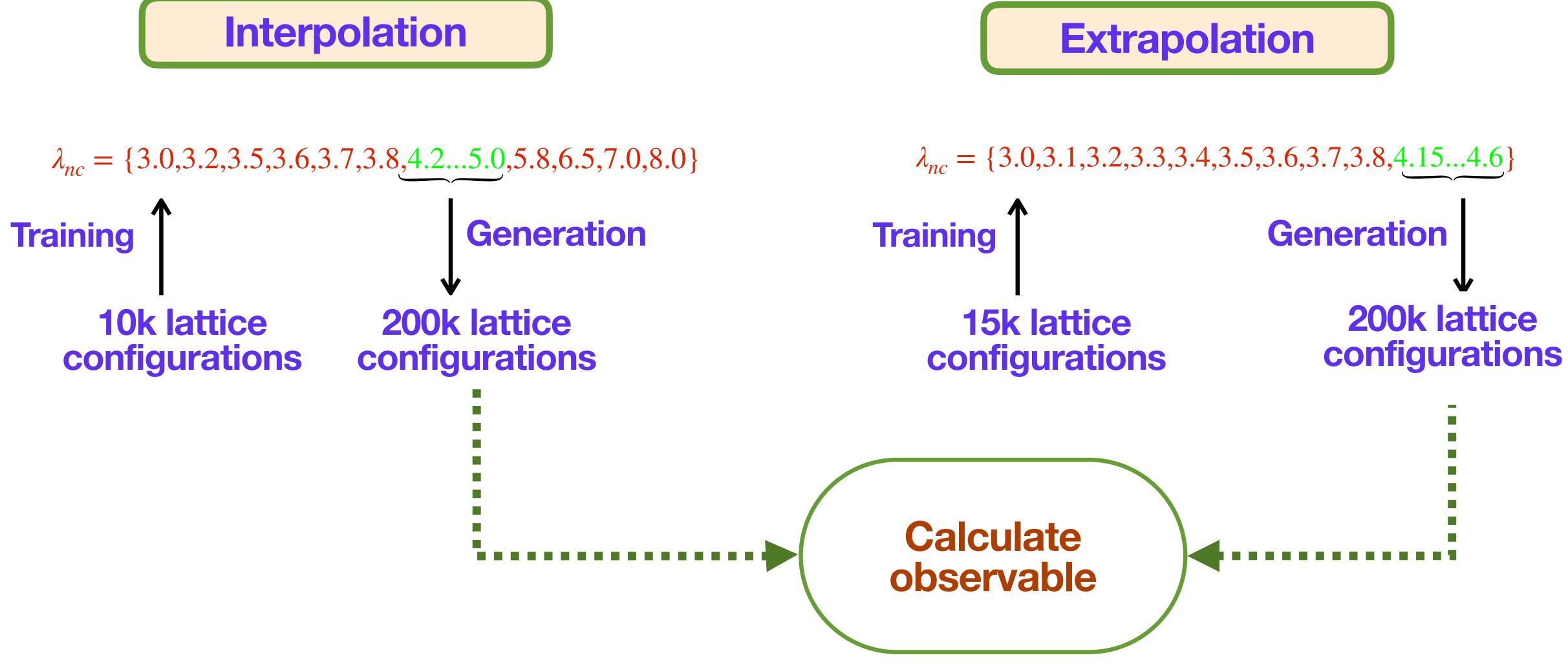
• Training samples $\phi \sim p(\phi | \lambda_{nc})$ where λ_{nc} belong to both non-critical regions.

* Extrapolation: generates samples on a single side of critical region.

• Training samples $\phi \sim p(\phi | \lambda_{nc})$ where λ_{nc} belong to a single non-critical regions.

Conditional NF

C-NF: Training & Generation



Observable calculated on lattice from HMC and C-NF Model are:

1.
$$\langle \tilde{\phi}^2 \rangle$$
: $\tilde{\phi} = \frac{1}{V} \sum_x \phi(x)$

2. Zero momentum Correlation Function: $C(t) = \sum_{x_1} G_c(x_1, t)$

where, $x = (x_1, t)$ and

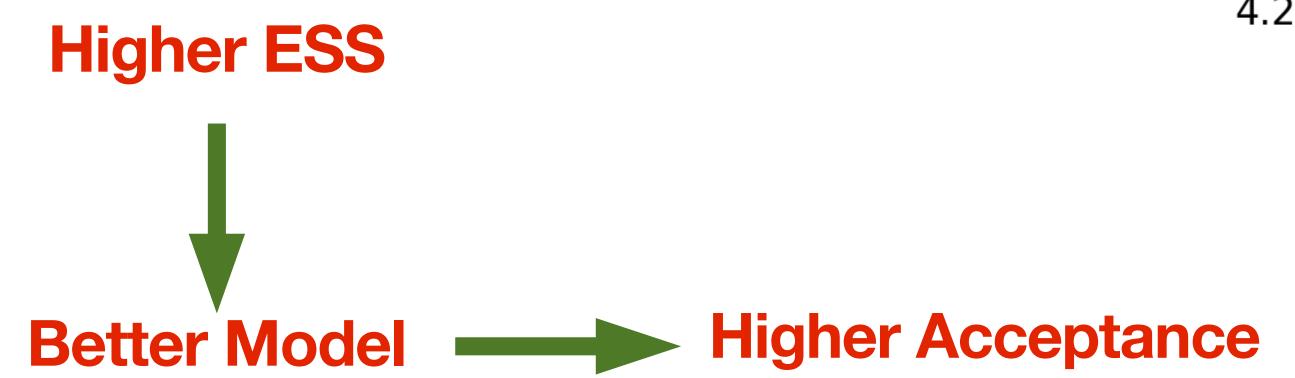
 $G_c(x) = \frac{1}{V} \sum_{y} \left[\langle \phi(y)\phi(x+y) \rangle - \langle \phi(y) \rangle \langle \phi(x+y) \rangle \right]$

3. Two Point Susceptibility: $\chi = \sum_x G(x)$

Results: Effective Sample Size (ESS)

C-NF model quality: ESS

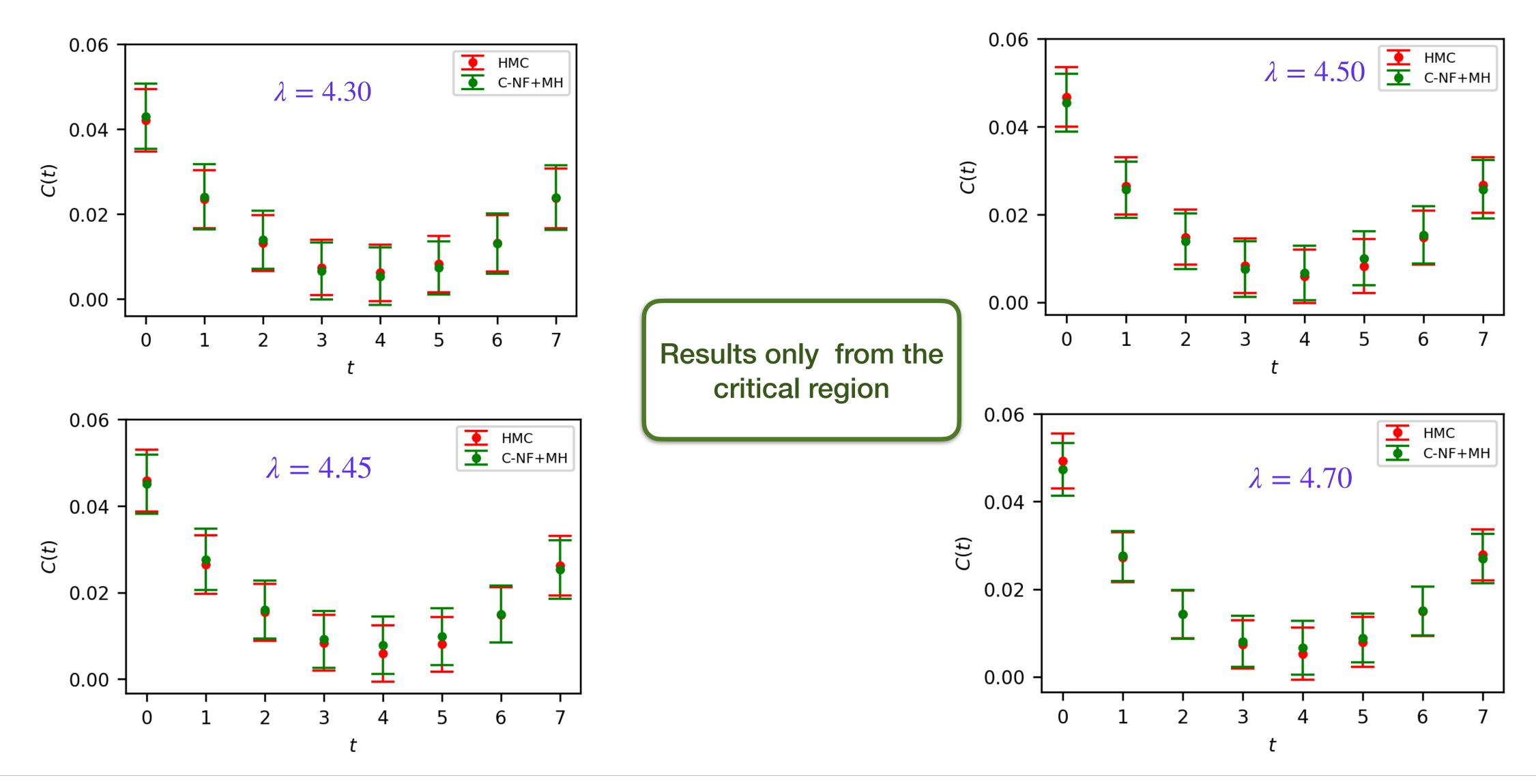
$$ESS = \frac{1}{N} \frac{\left(\sum_{i=1}^{N} p(\phi_i; \lambda) / \tilde{p}(\phi_i; \lambda, \theta)\right)^2}{\sum_{i=1}^{N} \left(p(\phi_i; \lambda) / \tilde{p}(\phi_i; \lambda, \theta)\right)^2}$$





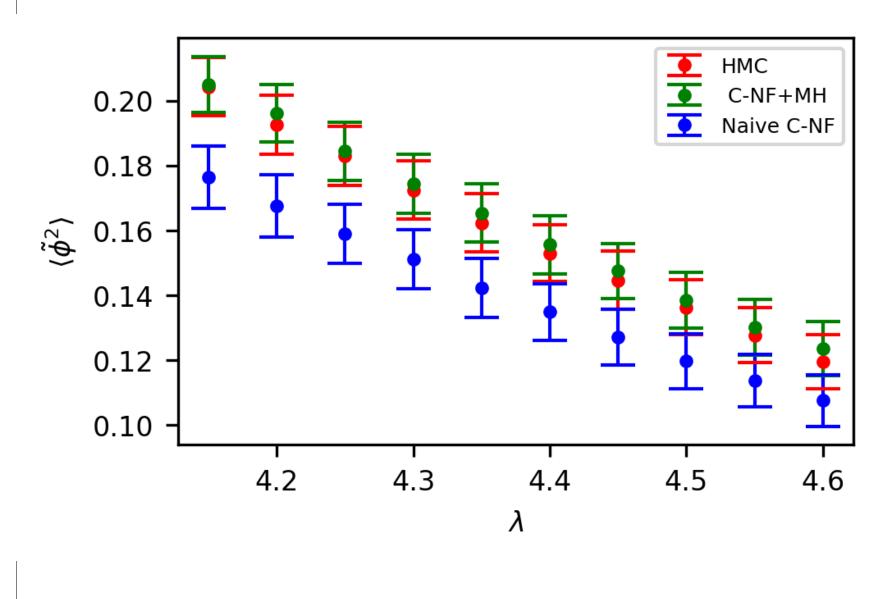
Results: Correlation Functions

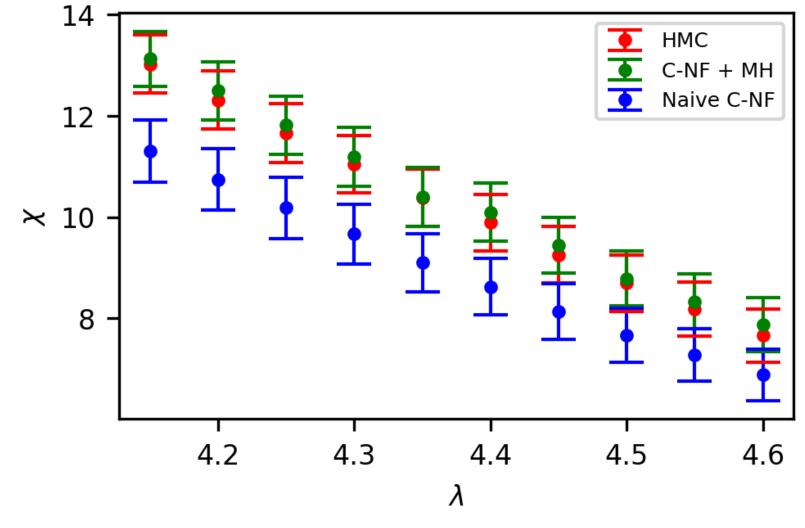
Extrapolation



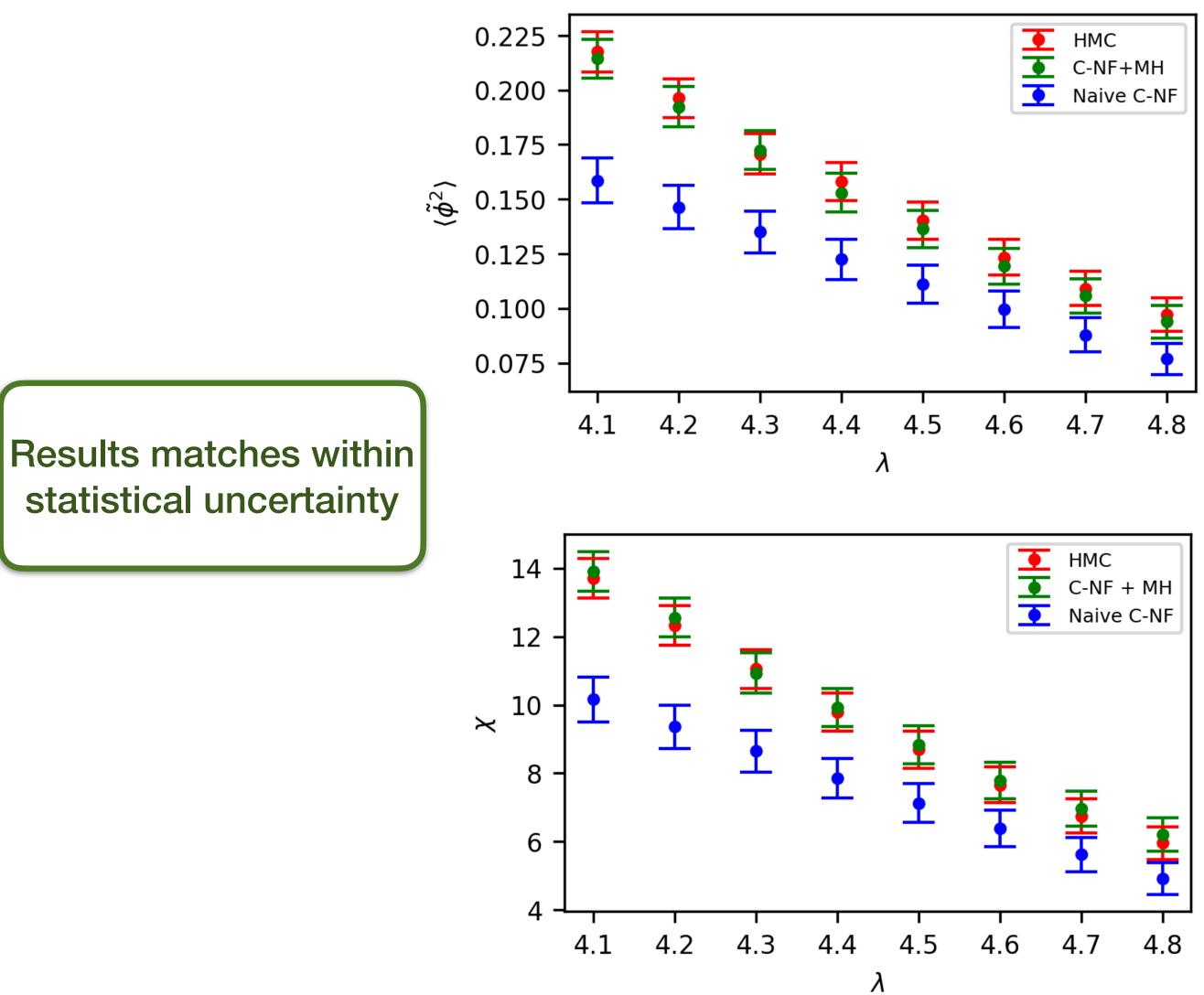
Results : χ and $\langle \tilde{\phi}^2 \rangle$

Extrapolation





Interpolation



Results: artefacts removed by MH

Naive model

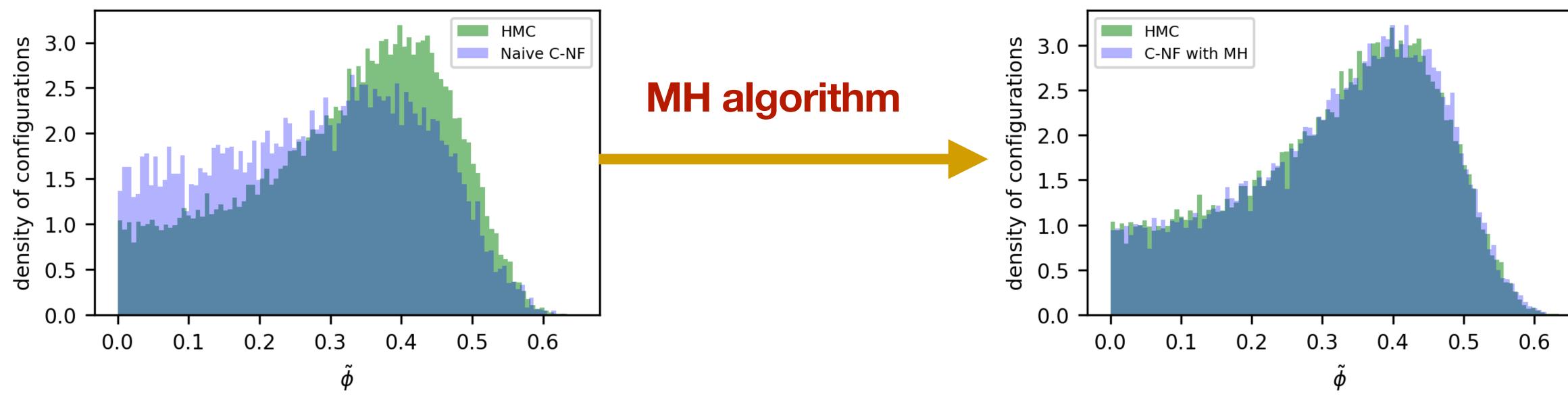
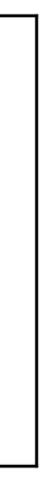


Figure: Histogram of density of lattice configurations for average field value ϕ on a lattice.

Naive model + MH

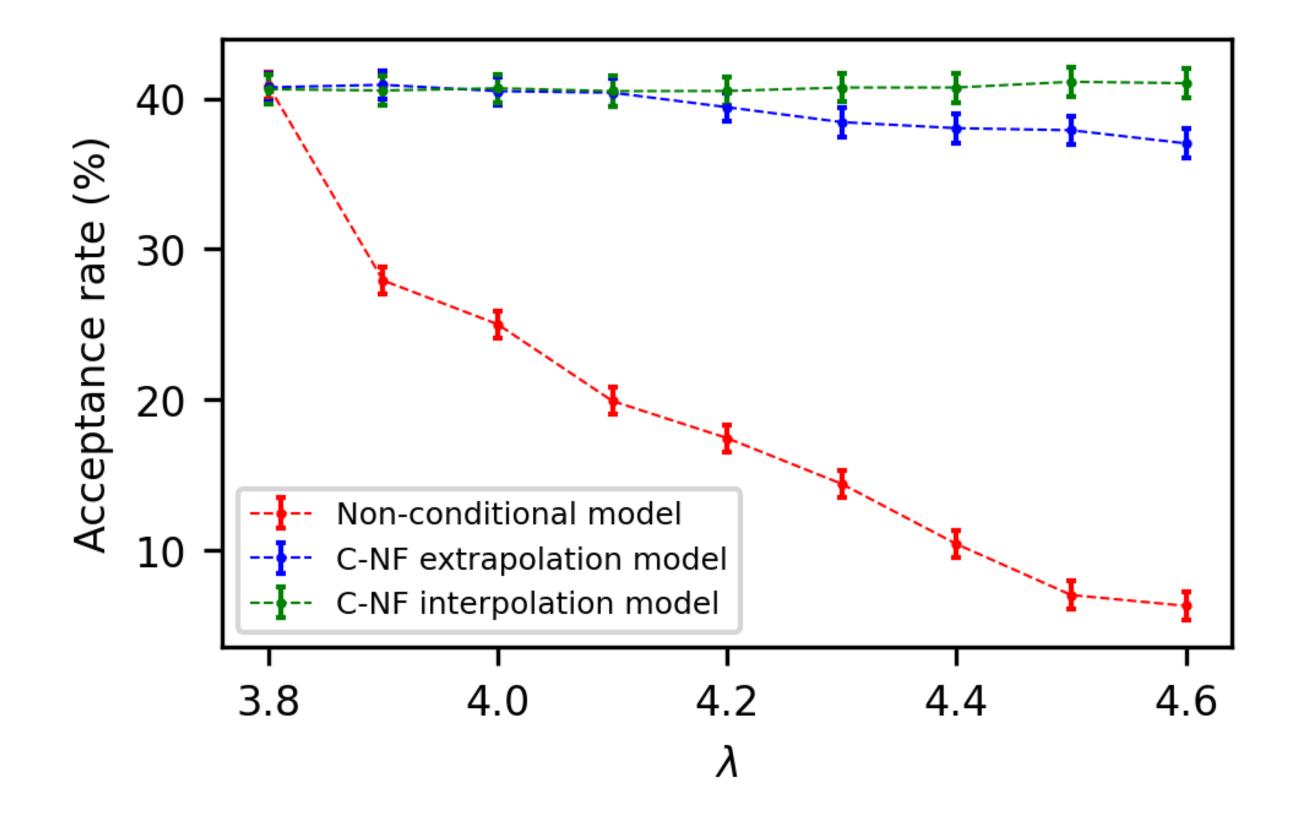


Results: compared to a non-conditional model

Acceptance rate in MH: a non-conditional model trained at $\lambda = 3.8$ vs conditional models.

✓ For interpolation and extrapolation the acceptance rate is almost constant over action parameter.

✓ For a non-conditional model the acceptance rate drops faster over the action parameter.



Problem: MCMC simulations are severely affected by CSD.

Proposed: A conditional NF model.

https://arxiv.org/abs/1904.12072

NF generate proposals for MH

Conditional NF generate MH proposals for wide range of action parameter.

Low Simulation Cost

Utilise samples from noncritical region

THANK YOU !