Quantum annealing applications in high-energy physics

ACAT 2022

S.A. Abel, JCC, M. Spannowsky, 2202.11727

JCC, M. Spannowsky, 2204.03657
JCC, R. Kogler, M. Spannowsky, 2207.10088

Juan Carlos Criado (IPPP Durham)

Classical and quantum optimisation

Classical

Minimize the loss function $\mathscr{L}(x)$

Quantum
Find the ground state of the Hamiltonian H

Machine learning, fits, ...

Quantum annealing

$$
H(s)=A(s) H_{0}+B(s) H_{1}
$$

1. Prepare the system in the ground state of H_{0}
2. Change s slowly from 0 to 1
3. Measure: obtain the ground state of H_{1}

By the adiabatic theorem

Transverse-field Ising model QA

$$
\begin{aligned}
& H(s)=A(s) H_{0}+B(s) H_{1} \\
& H_{0}=\sum_{i} \sigma_{i}^{x} \quad H_{1}=\sum_{i j} J_{i j} \sigma_{i}^{z} \sigma_{j}^{z}+\sum_{i} h_{i} \sigma_{i}^{z}
\end{aligned}
$$

Measuring the eigenvalue $\left(s_{1}, s_{2}, \ldots\right)$ of $\left(\sigma_{1}^{z}, \sigma_{2}^{z}, \ldots\right)$ solves the problem
Ising
$\min _{s_{i}= \pm 1} \sum_{i j} J_{i j} s_{i} s_{j}+\sum_{i} h_{i} s_{i}$

D-Wave quantum annealers

Pegasus architecture

Advantage_system6.1

5616 qubits
40135 couplings
Max. 16 couplings per qubit

If the Ising model is more densely connected \Longrightarrow chain several qubits together

Quantum annealing advantage

A.D. King, Nature Communications (2021)12:1113

Tunneling

S.A. Abel, A. Blance, M. Spannowsky, 2105.13945

Thermal excitations over top of barrier at large T

Quantum excitations through barrier at small s

Encoding

Binary encoding

Minimize a loss function $\mathscr{L}\left(x_{1}, x_{2}, \ldots\right)$ in a box $\left[L_{1}, U_{1}\right] \times\left[L_{2}, U_{2}\right] \times \ldots$
up to a finite precision $1 / 2^{p}$

$$
x_{i}=L_{i}+\frac{U_{i}-L_{i}}{1-2^{-n-1}} \sum_{n=1}^{p} \frac{q_{i \alpha}}{2^{\alpha}}
$$

$$
\left(q_{i \alpha} \in\{0,1\}\right)
$$

Reduction to quadratic

What if $\mathscr{L}(x)$ has higher-degree terms in x ?
It becomes a higher-degree polynomial in the qubits q_{a}

1. Introduce auxiliary qubits $p_{a b}$, representing the products $p_{a b}=q_{a} q_{b}$
2. New loss function: $\mathscr{L}^{\prime}(q, p)=\mathscr{L}(q, p)+\lambda \sum_{a b} C\left(q_{a}, q_{b}, p_{a b}\right)$

$$
C(x, y, z)=x y-2 z(x+y)+3 z \text { minimised } \Longleftrightarrow x y=z
$$

Applications

Training neural networks

Approximate activation functions with polynomials

Qade: solving differential equations

gitlab.com/jccriado/qade

$$
\mathscr{L}=\sum_{i} \mathrm{E}_{i}(f, \partial f, \ldots)^{2}+\sum_{j} \mathrm{BC}_{j}(f, \ldots)^{2}
$$

QFitter: EFT Wilson coefficient fits

$$
\begin{gathered}
\chi^{2}=\sum_{i j} V_{a} C_{a b}^{-1} V_{b}, \quad V_{a}=O_{a}^{(\exp)}-O_{a}^{(\mathrm{th})}(c) \\
O_{a}^{(\mathrm{th})}(c)=A_{a}+\sum_{i} B_{a i} c_{i}+\sum_{i j} C_{a i j} c_{i} c_{j} \\
\mathcal{L}=\frac{c_{u 3} y_{t}}{v^{2}}\left(\phi^{\dagger} \phi\right)\left(\bar{q}_{L} \tilde{\phi} u_{R}\right)+\frac{c_{d 3} y_{b}}{v^{2}}\left(\phi^{\dagger} \phi\right)\left(\bar{q}_{L} \phi d_{R}\right) \\
+\frac{i c_{W} g}{2 m_{W}^{2}}\left(\phi^{\dagger} \sigma^{a} D^{\mu} \phi\right) D^{\nu} W_{\mu \nu}^{a}+\frac{c_{H}}{4 v^{2}}\left(\partial_{\mu}\left(\phi^{\dagger} \phi\right)\right)^{2} \\
+\frac{c_{\gamma}\left(g^{\prime}\right)^{2}}{2 m_{W}^{2}}\left(\phi^{\dagger} \phi\right) B_{\mu \nu} B^{\mu \nu}+\frac{c_{g} g_{S}^{2}}{2 m_{W}^{2}}\left(\phi^{\dagger} \phi\right) G_{\mu \nu}^{a} G^{a \mu \nu} \\
+\frac{i c_{H W} g}{4 m_{W}^{2}}\left(\phi^{\dagger} \sigma^{a} D^{\mu} \phi\right) D^{\nu} W_{\mu \nu}^{a} \\
+\frac{i c_{H B} g^{\prime}}{4 m_{W}^{2}}\left(\phi^{\dagger} D^{\mu} \phi\right) D^{\nu} B_{\mu \nu}+\text { h.c. }
\end{gathered}
$$

Conclusions

- Quantum annealing paradigm: find the ground state of the Ising model
- Scaling advantage in performance over classical methods
- Robust global-minimum finding in non-convex loss functions
- Minimisation of general functions of continuous variables:
- Binary encoding
- Reduction to quadratic
- Applications:
- Purely quantum-trained neural networks
- Solving partial differential equations
- Fitting EFT coefficients

