Unweighted event generation for multi-jet production processes based on matrix element emulation

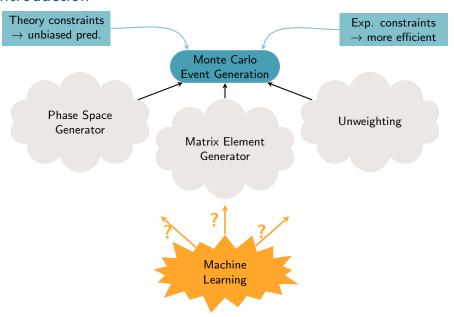
Timo Janßen

in collaboration with K. Danziger, D. Maître, S. Schumann, F. Siegert, H. Truong

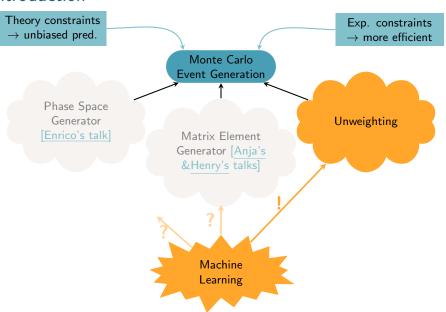
Institut für Theoretische Physik, Georg-August-Universität Göttingen

ACAT 2022

Introduction

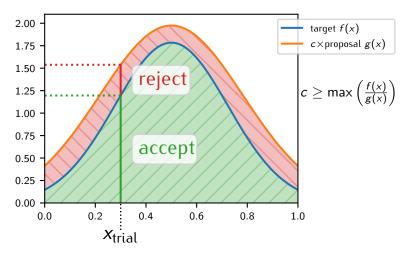


Introduction



How to generate unweighted events

rejection sampling (hit-or-miss):



Unweighting efficiency:
$$\epsilon = \frac{N_{\rm accepted}}{N_{\rm trials}} \approx \frac{1}{c} \left\langle \frac{f}{g} \right\rangle$$

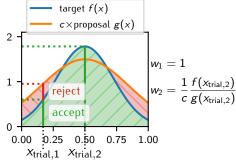
- ► #Feynman diagrams grows factorially with #particles
 - \rightarrow high-multiplicity MEs are very expensive
- need to evaluate the ME for each trial event
 - ightarrow small unweighting efficiency = bottleneck

Idea:

- reduce event generation time by reducing the number of calls to the matrix element
 - \rightarrow use a fast & accurate surrogate
- correct all errors from the approximation in a 2nd unweighting step
 - \rightarrow method is unbiased by design

Interlude: Partial unweighting

- NN are suitable as highly accurate surrogates
 ... but can produce extreme outliers
- ► large-weight outliers diminish unweighting efficiency even when contribution to total XS is miniscule

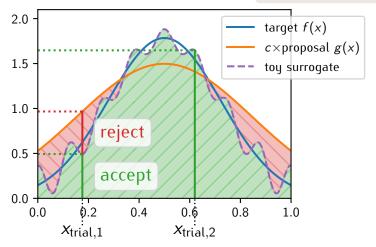


Partial Unweighting

- ▶ allow g below f
- lacktriangle some events get an overweight $ilde{w}>1$
- partial unweighting is the default in SHERPA (and other generators)
 - we don't know the global maximum
 - partial unweighting is much faster

Surrogate unweighting

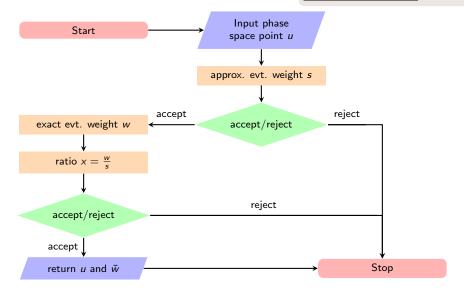
K. Danziger, TJ, S. Schumann, F. SiegertSciPost Phys. 12, 164 (2022)



- surrogate should be fast and accurate
- have to correct for wrong accept/reject probabilities
 - → 2nd unweighting against true target for all accepted points

Surrogate unweighting algorithm

K. Danziger, TJ, S. Schumann, F. Siegert
 SciPost Phys. 12, 164 (2022)



Matrix element emulation

- ▶ gradient boosting machines for loop-induced amplitudes [F. Bishara, M. Montull: arXiv:1912.11055]
- NN for $e^+e^- \rightarrow \text{jets}$ [S. Badger, J. Bullock: JHEP 06 (2020) 114]
- ► NN for loop-induced amplitudes [J. Aylett-Bullock, S. Badger, R. Moodie: JHEP 08 (2021) 066]
- lacktriangle dipole model for $e^+e^- o$ jets [D. Maître, H. Truong: JHEP 11 (2021) 066]
- ► learn ME×PS for surrogate unweighting [K. Danziger, TJ, S. Schumann, F. Siegert: SciPost Phys. 12, 164 (2022)]
- ► Bayesian networks for loop amplitudes [S. Badger, A. Butter, M. Luchmann, S. Pitz, T. Plehn: arXiv:2206.14831]

D. Maître, H. Truong

JHEP 11 (2021) 066

soft/collinear factorisation properties

$$|\mathcal{M}_{n+1}|^2 \to |\mathcal{M}_n|^2 \otimes \mathbf{V}_{ijk}$$

[Catani, Seymour Nucl.Phys. B485 (1997) 291-419]

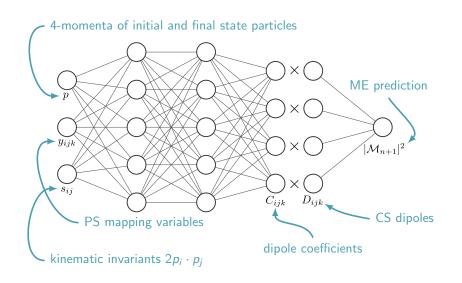
Ansatz

$$\langle |\mathcal{M}|^2 \rangle = \sum_{\{ijk\}} C_{ijk} D_{ijk}$$

- ▶ $D_{ijk} = \langle V_{ijk} \rangle / s_{ij}$: spin-averaged Catani-Seymour dipoles divided by kinematic invariant
- C_{ijk}: coefficients fit by neural network

D. Maître, H. Truong

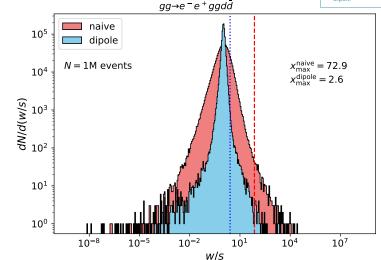
JHEP 11 (2021) 066



Comparison with naive (non-dipole) model for Z + 4j:

Comparison of eval time:

 $\frac{t_{\rm AMEGIC}}{t_{\rm dipole}} \approx 388$



Implementation details

- constraint from experiment simulation workflow: CPU single threaded
- ▶ for NN evaluation use ONNX Runtime with all possible optimisations
- ► two step unweighting implemented in SHERPA [Gleisberg et al. JHEP02(2009)007, Bothmann et al. SciPost Phys. 7, 034 (2019)]
- ► ME generator: AMEGIC [Krauss et al. JHEP 02 (2002) 044]

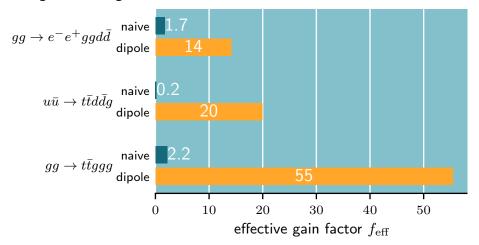
 \rightarrow no benefit from NN vectorisation capabilities

• we evaluate the performance for processes that are very important for the LHC: V+jets & $t\bar{t}$ +jets

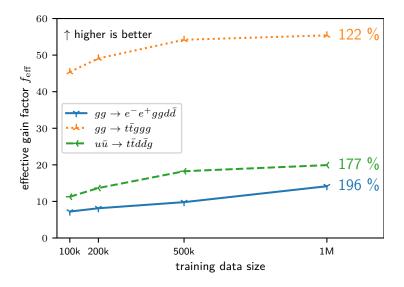
Results: effective gain factors for LHC multi-jet processes

$$f_{\mathsf{eff}} := \frac{T_{\mathsf{standard}}}{T_{\mathsf{surrogate}}}$$

Using 1M training events:



Results: effect of training size variation



Colour sampling

- realistic use case: multi-jet merged calculations @LHC
- ▶ most promising part: highest multiplicity LO amplitudes → Chris' talk
- ▶ at high multiplicity we prefer colour-sampling → Max's talk

naive ansatz

- use the same (colour-summed) dipole model and augment it with colour assignments
- ▶ let the NN figure out the rest
- ▶ difficulty: with Comix [Gleisberg & Höche JHEP12 (2008) 039]: $T(w_{PS}) \approx T(w_{ME})$
 - ightarrow train on full event weight $(w_{\mathsf{ME}} \times w_{\mathsf{PS}})$

Result:

- → significant drop in performance, no gains
- → further work necessary

Summary

- generic method to speed up unweighting with surrogates
- premises: costly integrand & low unweighting efficiency
- dipole model very accurate for colour-summed MEs
 - ightarrow incl. hadronic initial states & massive quarks
- ► large gain factors for unweighting of colour-summed MEs
 - ightarrow can enable colour-summing for higher multiplicities

Outlook

- ▶ improve gains for **colour-sampled** MEs by using better suited models
- use dipole model for other applications
- ▶ emulation of **loop amplitudes** [see talks by Anja and Henry]

Summary

- generic method to speed up unweighting with surrogates
- premises: costly integrand & low unweighting efficiency
- dipole model very accurate for colour-summed MEs
 - ightarrow incl. hadronic initial states & massive quarks
- ► large gain factors for unweighting of colour-summed MEs
 - ightarrow can enable colour-summing for higher multiplicities

Outlook

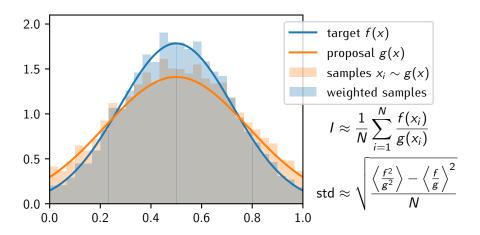
- ▶ improve gains for **colour-sampled** MEs by using better suited models
- use dipole model for other applications
- ▶ emulation of **loop amplitudes** [see talks by Anja and Henry]

Questions?

Backup

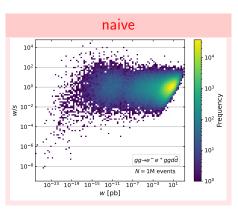
How to generate weighted events

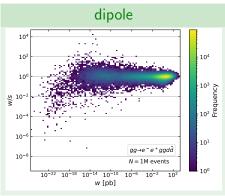
importance sampling:



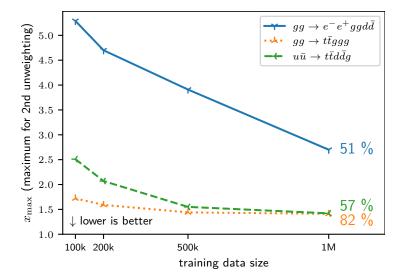
HEP example: Breit-Wigner distribution for resonances

Comparison with naive (non-dipole) model:

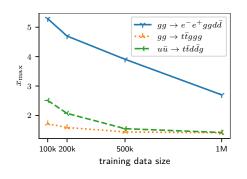


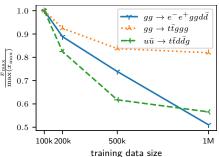


Effect of training size variation:



Effect of training size variation:





Results: effect of training size variation

