

End-to-end Reconstruction for Highly Granular Calorimeters

Nadezda Chernyavskaya, Jan Kieseler, Kenneth Long, Raheel Nawaz, Maurizio Pierini, Shah Rukh Qasim, Oleksandr Viazlo, <u>Philipp Zehetner</u>

Work in context of CMS ML4Reco

24.10.2022

Motivation

- Upgrade to to High-Luminosity LHC (HL-LHC)
- Up to 200 collisions in every event (PU 200)
- CMS will upgrade their endcap calorimeters
- High Granularity Calorimeter (HGCAL)
 - > ~ 6M readout channels (silicon + scintillators)
 - > ~ 200k active channels per event

Task of Neural Network

- Cluster hits belonging to the same particle
- Regress energy of clusters
- Particle ID, particle flow
- [1] <u>arXiv:1902.07987</u> GravNet

24.10.2022

- [2] arXiv:2002.03605 Object Condensation
- [3] arXiv:2204.01681 Full Reconstruction

Last year at ACAT

- Poster by Thomas Klijnsma (link)
- ♦ Demonstrated end-to-end reconstruction of two-*τ* events in HGCAL
- 0 PU environment

Detector

We did not use the HGCAL for this work but instead a toy detector (TD) of comparable complexity

24.10.2022

Training Data

Example train event - 60 Particles + PU in 30° ϕ region

Single Particle

- ➢ Simulated with GEANT4
- \succ $e^-,~,\gamma,~,\pi^+,~,\pi^0,~ au$
- \blacktriangleright $E \in [0.1, 200] ext{ GeV}$ $\eta \in [1.4, 3.1]$
- particles generated 1 mm in front of detector (no tracker or magnetic field)

Pile Up

- Minimum bias proton-proton collisions generated using PYTHIA8
- √s = 13 TeV
 - only added in random $30^{\circ} \phi$ region
 - memory constraints while training
 - reduces hits from ~200k to ~34k
 - this will not be applied to test sets

Training events are 60 single particle simulations combined random Gaussian detector noise and 200 PU added in a random $30^{\circ} \phi$ region

24.10.2022

Architecture - GravNet

Architecture is based around GravNet layers

- Graph based approach is natural for sparse data
- Allows propagation of information through detector
- Faster than similar approaches e.g. DGCNN [4]

[4] Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds

24.10.2022

GravNet Transform input features F_{TN} into **~**a) transformed features **F**_L Speed latent coordinates S Build graph using coordinates S b) Aggregate weighted features d) Weights depending on distance 0 Performance Aggregation typically is mean or max Concatenate the new features e

Object Condensation Loss

Enables us to reconstruct an a priori unknown number of particles

- Every vertex can represent a shower
- Encourage model to have one representative vertex (RV) per object
- In the latent space:
 - Vertices are pulled towards their RV
 - Vertices are pushed away from other RVs
 - Hits of the same shower are clustered together
- Points around RVs in the latent space are collected as shower
- RV is then used to predict shower's properties

24.10.2022

Energy & Momentum

Energy Regression

- Unfavourable to directly predict showers' energies as
 - > energies can differ by orders of magnitude
 - sensitive to splitting or merging showers
- Instead learn a correction factor ψ multiplied to shower's energy

Transverse Momentum

- Calculated from energy using the showers energy weighted mean position
- For consistency this is used for
 - \succ p_{Tpred} (using E_{pred})

$$E_{pred} = \psi \; \sum_{h \in ext{shower}} e_h$$

$$\int p_T = E/\cosh\eta$$

Test Data

24.10.2022

Example test event - Single Particle + 200 PU

Single Particle

- Simulated with GEANT4
- $e^-,~\gamma,~\pi^+$ \succ
- $E \in [0.1, 200] ext{ GeV}$ \succ
- $\eta \in \left[1.6, 2.9
 ight]$
- Jets
 - \succ q ar q o t t
 - generated at \sqrt{s} = 13 TeV using PYTHIA8 \succ
- Pile Up
 - Minimum bias proton-proton collisions \succ generated using PYTHIA8
 - √s = 13 TeV \succ

Test sets are a single particle or jet events combined with random Gaussian detector noise and up to 200 PU

Matching & Metrics

EIOU: <u>Energy-weighted hit-intersection</u> <u>over hit-union</u>

EIOM: <u>Energy-weighted hit-intersection</u> <u>over hit-minimum</u>

 $egin{aligned} ext{EIOU}(t,p) &= rac{\sum_{h \in H_t \cap H_p} e_h}{\sum_{h \in H_t \cup H_p} e_h} \ ext{EIOM}(t,p) &= rac{\sum_{h \in H_t \cap H_p} e_h}{\min\left(\sum_{h \in H_t} e_h, \sum_{h \in H_p} e_h
ight)} \ \hat{p} &= rgmas_{p \in P} \left(ext{EIOU}(\hat{t}\,,p)
ight) \end{aligned}$

Efficiency:

% of true showers where $\, \, {
m EIOU} \left({{\hat t}\,,{\hat p}}
ight) \ge 0.5$

Unmatched Rate:

% of predicted showers where $ext{EIOU}ig(\hat{t}\,,pig) < 0.5 \\ ext{EIOM}ig(\hat{t}\,,pig) > 0.9 \end{tabular}$

Baseline

$$E_{ ext{baseline}} = \sum_{h \in H_t} e_h$$

This baseline will be hard to match as it uses the truth information of the showers

Response

 $< p_{T_{mod}}/p_{T_{tmuth}} >$

Mean-corrected resolution $\sigma \left(p_{T_{
m end}} / p_{T_{
m truth}}
ight) / < p_{T_{
m end}} / p_{T_{
m truth}} >$

24.10.2022

Efficiency & Unmatched Rate

Efficiency EM

- Efficiency quickly approached 100% with high p_T
- PU reduces efficiency for showers with small p_T (< 20 GeV)

Efficiency HAD

- PU has larger impact on reconstruction efficiency
- 200 PU hadronic showers are the most challenging case

Unmatched Rate

 High PU causes low p_T showers to be unmatched

24.10.2022

Response & Resolution

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Without PU resolution and response match truth assisted base line
- PU influences resolution, but only affects response for low energies

- Lower resolution for hadronic particles also for truth assisted base line
- PU again mostly affects resolution

24.10.2022

Jet Reconstruction

LUDWIG-MAXIMILIANS-UNIVERSITÄT WÜNCHEN

[5] M. Cacciari, G. P. Salam, and G. Soyez. The anti-kt jet clustering algorithm. Journal of High Energy Physics, 2008(04):063, 2008.

24.10.2022

Jet Reconstruction

24.10.2022

Computational Requirements

- Less than 10 seconds inference time for 200 PU (NVIDIA V100 GPU)
- Less than 1.5 GB peak memory usage for 200 PU
 →Can be deployed on low-end GPUs
- Ongoing work on inclusion of small clustering models to compress input indicate potential for significant speed ups

24.10.2022

Summary & Outlook

Summary

- End-to-end reconstruction of particles and jets in 200 PU events
- Promising performance, often close to a truth assisted base line
- Demonstrated generalization over different types of events
- Fast execution time, linear scaling with detector hits
- Possible to be used on affordable low-end GPUs

Ongoing work

- Prediction of Particle ID
- Compression/Clustering of input for faster inference time
- Use of information from other detector subsystems (e.g. tracker)

24.10.2022