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Motivation
❖ Upgrade to to High-Luminosity LHC (HL-LHC)
❖ Up to 200 collisions  in every event (PU 200)
❖ CMS will upgrade their endcap calorimeters
❖ High Granularity Calorimeter (HGCAL)

➢ ~ 6M readout channels (silicon + scintillators) 
➢ ~ 200k active channels per event

[1] arXiv:1902.07987 GravNet

[2] arXiv:2002.03605 Object Condensation

[3] arXiv:2204.01681 Full Reconstruction

HGCAL
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Task of Neural Network

❖ Cluster hits belonging to the same particle
❖ Regress energy of clusters 
❖ Particle ID, particle flow

Last year at ACAT
❖ Poster by Thomas Klijnsma (link)
❖ Demonstrated end-to-end reconstruction of 

two-   events in HGCAL
❖ 0 PU environment

https://arxiv.org/abs/1902.07987
https://arxiv.org/abs/2002.03605
https://arxiv.org/abs/2204.01681
https://indico.cern.ch/event/855454/contributions/4596495/
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Detector

We did not use the HGCAL for this work but instead a toy detector (TD) of comparable complexity

HGCAL TD

Channels 3 M 
per endcap 0.8 M 

Sensor 
shape

hexagons
(silicon)

squares    
(η, φ)

Layers 52 56

Varying 
materials ✅ ✅

#hits 
(200PU) ~250k ~180kLongitudinal view [3] Transverse view [3]
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https://arxiv.org/abs/2204.01681
https://arxiv.org/abs/2204.01681
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Training Data
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❖ Single Particle
➢ Simulated with GEANT4
➢  
➢
➢ particles generated 1 mm in front of 

detector (no tracker or magnetic field)
❖ Pile Up

➢ Minimum bias proton-proton collisions
generated using PYTHIA8

➢ √s = 13 TeV 
➢ only added in random 30° φ region

■ memory constraints while training
■ reduces hits from ~200k to ~34k
■ this will not be applied to test sets

Training events are 60 single particle simulations 
combined random Gaussian detector noise and 200 PU 
added in a random 30° φ region

Example train event - 60 Particles + PU in 30° φ region
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Architecture - GravNet 
Architecture is based around GravNet layers

❖ Graph based approach is natural for sparse data 
❖ Allows propagation of information through detector
❖ Faster than similar approaches e.g. DGCNN [4]

GravNet
a) Transform input features FIN into

○ transformed features FLR
○ latent coordinates S

b) Build graph using coordinates S
d) Aggregate weighted features

○ Weights depending on distance 
○ Aggregation typically is mean or max

e) Concatenate the new features
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[4] Yue Wang et al. Dynamic Graph CNN for Learning on Point Clouds

Architecture of our model

Speed

Performance
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Object Condensation Loss

Enables us to reconstruct an a priori unknown number of particles
❖ Every vertex can represent a shower 
❖ Encourage model to have one representative vertex (RV) per object
❖ In the latent space:

➢ Vertices are pulled towards their RV
➢ Vertices are pushed away from other RVs
➢ Hits of the same shower are clustered together

❖ Points around RVs in the latent space are collected as shower
❖ RV is then used to predict shower’s properties

J. Kieseler, arXiv:2002.03605, Eur. Phys. J. C 80, 886 (2020)
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←before Training
after Training →

Inputs + 
representative point Activation Cluster space 

Coordinates

https://arxiv.org/abs/2002.03605
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Energy & Momentum

Energy Regression

❖ Unfavourable to directly predict 
showers’ energies as 
➢ energies can differ by orders of magnitude
➢ sensitive to splitting or merging showers

❖ Instead learn a correction factor ψ 
multiplied to shower’s energy
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Transverse Momentum

❖ Calculated from energy using the 
showers energy weighted mean 
position

❖ For consistency this is used for 
➢ pTpred (using Epred) 
➢ pTtruth (using Etruth) 
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Test Data
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❖ Single Particle
➢ Simulated with GEANT4
➢
➢  
➢

❖ Jets
➢
➢ generated at √s = 13 TeV using PYTHIA8

❖ Pile Up
➢ Minimum bias proton-proton collisions

generated using PYTHIA8
➢ √s = 13 TeV 

Test sets are a single particle or jet events combined 
with random Gaussian detector noise and up to 200 PU 

Example test event - Single Particle + 200 PU

Test sets are very different from training set
→We test the model’s ability to generalize
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Matching & Metrics
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EIOU: Energy-weighted hit-intersection over hit-union

EIOM: Energy-weighted hit-intersection over hit-minimum

Efficiency: 
% of true showers where 

Unmatched Rate: 
% of predicted showers where 

Response

Mean-corrected resolution

Baseline

This baseline will be hard to match as it uses the 
truth information of the showers
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Efficiency & Unmatched Rate
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HAD

EM
EM & HAD

Efficiency EM
❖ Efficiency quickly approached 100% 

with high pT  
❖ PU reduces efficiency for showers 

with small pT (< 20 GeV)

Efficiency HAD
❖ PU has larger impact on 

reconstruction efficiency 
❖ 200 PU hadronic showers are the 

most challenging case
Unmatched Rate
❖ High PU causes  low pT showers to 

be unmatched
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Response & Resolution
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EM HAD

❖ Without PU resolution and response match 
truth assisted base line 

❖ PU influences resolution, but only affects 
response for low energies

❖ Lower resolution for hadronic particles also for 
truth assisted  base line

❖ PU again mostly affects resolution
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Jet Reconstruction
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[5] M. Cacciari, G. P. Salam, and G. Soyez. The anti-kt jet clustering algorithm. Journal of High Energy Physics, 2008(04):063, 2008.

Example test event:                  + 200 PU predicted 
showers

truth 
jets

truth 
showers

predicted 
jets

remove 
pileup

filter 
pileup

anti-kt 
jet-clustering[5]

matching

Only consider truth showers 
from non-pileup particles

Remove predicted showers 
with > 90% of their energy 
from pileup interaction
(assume existence of pileup 
identification algorithm)

Distance parameter R=0.4

Based on
Among jets with 

select best match by 



24.10.2022 End-to-end Reconstruction for Highly Granular Calorimeters

Jet Reconstruction
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Pile Up 40 Pile Up 200

❖ Response < 1 due to large hadronic contributions
❖ Comparable response to baseline
❖ Resolution approaching 10% in both PU scenarios 

Baseline:
based on true deposited energy of incident
non-pileup particles
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Computational Requirements

14

❖ Inference time and memory both scale linear with 

number of hits in detector

❖ Less than 10 seconds inference time for 200 PU

(NVIDIA V100 GPU)

❖ Less than 1.5 GB peak memory usage for 200 PU

→Can be deployed on low-end GPUs

❖ Ongoing work on inclusion of small clustering 

models to compress input indicate potential for 

significant speed ups
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Summary & Outlook
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❖ End-to-end reconstruction of particles and jets in 
200 PU events

❖ Promising performance, often close to a truth 
assisted base line

❖ Demonstrated generalization over different types of 
events

❖ Fast execution time, linear scaling with detector hits
❖ Possible to be used on affordable low-end GPUs

Summary
❖ Prediction of Particle ID

❖ Compression/Clustering of input for faster 

inference time

❖ Use of information from other detector 

subsystems (e.g. tracker)

Ongoing work


