
Standalone track reconstruction in LHCb’s

SciFi detector for the GPU-based High Level

Trigger
A. De Oyanguren Campos (Univ. of Valencia, CSIC), A. Hennequin (LNS, MIT), B.
Kishor Jashal (Tata Inst. of Fundamental Research), C. Agapopoulou (CNRS), J. Zhuo
(Univ. of Valencia, CSIC), L. Henry (CERN), L. Calefice (TUD, LPNHE)

Presenter: arthur.hennequin@cern.ch

October 25th, 2022 Standalone SciFi track reconstruction on GPU 1/ 16

Track reconstruction in LHCb

• LHCb’s tracking sub-detectors:

Velo, UT, SciFi

• UT not available during the

commissioning

• Use Velo and SciFi to reconstruct

Long tracks

• This talk focuses on the SciFi tracker

⇒ 3 stations, 2 vertical “X layers”

and 2 tilted “U/V layers” each,

divided into 2 parts (y > 0/y < 0)
VELO track Downstream track

Long track

Upstream track

T track

Magnet

VELO
UT

T1 T2 T3

SciFi
Tracker

October 25th, 2022 Standalone SciFi track reconstruction on GPU 2/ 16

High Level Trigger on GPUs
For Run 3, LHCb uses a 2 stages software HLT:

• HLT1 takes event at 30MHz and runs on O(200) GPUs

• HLT2 takes HLT1-filtered events at 1MHz and runs on CPUs

Default HLT1 sequence vs our proposed HLT1 sequence:

Raw data

Velo decoding
& clustering

Velo tracking

Straight line fit

Find primary
vertices

Global
Event Cut

UT decoding

UT tracking

SciFi decoding

SciFi tracking

Parameterised
Kalman Filter

Calo decoding
& clustering

Muon ID

Muon decoding

Electron ID

Brem recovery

Select events

Selected
events

Find
secondary

vertices

Long tracks

Raw data

Velo decoding
&clustering

Velo tracking

Straight line f t

Find primary
vertices

Global
Event Cut

SciFi decoding

SciFi seeding

Parameterised
Kalman Filter

Calo decoding
&clustering

Muon ID

Muon decoding

Electron ID

Bremrecovery

Select events

Selected
events

Find
secondary
vertices

VeloSciFi
matching

Velo
seeds

SciFi seeds

L
o
n
g
tr
ac
ks

forward with UT (default) seeding and matching (ours)

October 25th, 2022 Standalone SciFi track reconstruction on GPU 3/ 16

SciFi seeding and matching

SciFi seeding:

• seed xz: find xz-projections using

only x layers

• seed confirmTracks: augment the

projections with a y component using

information from tilted u/v layers

Matching:

• extrapolate velo and scifi segments to

a parametrized position

• measure the error and keep the best

matches

x1 x2vu

z

y

x

track

xz-projection

SciFi

Velo

zmatch
x

}Velo track

SciFi seed

Δx

SciFi

Velo

zmatch
y

}Velo track

SciFi seed
Δy

October 25th, 2022 Standalone SciFi track reconstruction on GPU 4/ 16

Seeding algorithm: seed xz
For each part (y > 0/y < 0) independently:

• Store hits of the 6 X layers into shared memory

• Make triplets of aligned hits pointing roughly to coordinate (0,0,0)

⇒ search windows in each layer are momentum dependent

x

}

}

T3T2T1

Refused hit

Second hit
First hit

Towards  
(0,0,0)

Second hitFirst hit

Se
ar

ch
 w

in
do

w

Search  
window

Third hit

• Make 4-6 hits candidates with remaining x layers in registers

• Fit track parameters in xz (3rd order polynomial) and compute χ2

• Remove duplicates

October 25th, 2022 Standalone SciFi track reconstruction on GPU 5/ 16

Seeding algorithm: seed confirmTracks

For each part (y > 0/y < 0) independently:

• Store hits of the 6 U/V layers into shared memory

• Collect hits in UV layers for each xz track in parallel, starting in 2 different

layers, then using the track and first hit to collect the rest

• Fit track parameters in yz (linear) and compute χ2, on the fly

x1 x2vu

z

y

x

track

xz-projection

xpred(z) x̃

……
ỹ = y(z)

}
tolerance

October 25th, 2022 Standalone SciFi track reconstruction on GPU 6/ 16

Storing hits in Shared Memory

The seeding includes a lot of combinatorics over the hits: they are read multiple time

each and most of the time in random order (non-coalesced).

But shared memory is a limited storage, how many hits do we need to store ?

• We only care about the x of the hit (4 bytes)

• We only need 6 layers and one part at a time (X layers or UV layers)

• We authorized 6× 300 = 1800 hits in total: about 7.2KB

• Fallback to global memory if overflow: occurs very rarely.

October 25th, 2022 Standalone SciFi track reconstruction on GPU 7/ 16

Searching hits: global or shared memory ?

0 200 400 600 800 1000
#hits = #searches

0

2

4

6

8

10
tim

e
fo

r 1
00

K
"e

ve
nt

s"
 (m

s)
binary search global
binary search shared

Constant speedup: ×1.57 when using shared memory

October 25th, 2022 Standalone SciFi track reconstruction on GPU 8/ 16

Registers

Intermediate track candidates stay on the chip ⇒ stored in registers (the fastest kind

of memory on the GPU)

There are a few rules to allow the compiler to place a variable into registers (otherwise

they are placed in global memory):

• Loop sizes must be known at compile time (to allow full unrolling)

• Array indices must be known at compile time

• The maximum number of registers depends on how many threads per block and

how many block per streaming multiprocessor (max 64k 32-bit registers per SM)

• Delay conditional index increments to the very end of the kernel

October 25th, 2022 Standalone SciFi track reconstruction on GPU 9/ 16

Registers (Loop unrolling)

float x, tx; // registers

float dz[6]; // registers ?

float x_pred [6]; // registers ?

for (int i=3 ; i<6 ; i++) {

x_pred[i-3] = x + tx * dz[i];

}

// Compiler will unroll everything:

register x_pred_0 = x + tx * dz_3;

register x_pred_1 = x + tx * dz_4;

register x_pred_2 = x + tx * dz_5;

October 25th, 2022 Standalone SciFi track reconstruction on GPU 10/ 16

Registers (early conditional increment)

int hits [6]; // local variable

int nHits = 0;

for (int i=0 ; i<6 ; i++) {

// idx from somewhere , conditional increments:

if (idx != -1) hits[nHits ++] = idx;

}

// ...

for (int i=0 ; i<nHits ; i++) {

tracks[threadIdx.x].idx[i] = hits[i];

}

// Gets translated to:

ld.global.u32 %r2, [%rd2];

setp.eq.s32 %p1 , %r2, -1;

@%p1 bra $L__BB0_2;
st.local.u32 [%rd1], %r2;

// ...

ld.local.u32 %r42 , [%rd38]; // load from local (global) memory

st.global.u32 [%rd39], %r42; // store in global memory

October 25th, 2022 Standalone SciFi track reconstruction on GPU 11/ 16

Registers (delayed conditional increment)
int hits [6]; // local variable

int nHits = 0;

for (int i=0 ; i<6 ; i++) {

hits[i] = idx; // always store (idx may be invalid)

}

// ...

for (int i=0 ; i<6 ; i++) {

if (hits[i] != -1) tracks[threadIdx.x].idx[nHits ++] = hits[i];

}

// Gets translated to:

ld.global.u32 %r1, [%rd6];

ld.global.u32 %r2, [%rd6 +4];

ld.global.u32 %r3, [%rd6 +8];

ld.global.u32 %r4, [%rd6 +12];

ld.global.u32 %r5, [%rd6 +16];

ld.global.u32 %r6, [%rd6 +20];

// ...

setp.eq.s32 %p1 , %r1, -1;

@%p1 bra $L__BB1_2;
st.global.u32 [%rd9], %r1; // store register in global memory

October 25th, 2022 Standalone SciFi track reconstruction on GPU 12/ 16

Comparison to forward tracking with UT

36.46

132.66

138.53

167.43

193.85

196.09

36.6

130.93

133.61

171.28

191.66

195.2

0 20 40 60 80 100 120 140 160 180 200 220

2 x AMD EPYC 7502 32-Core(CPU)

NVIDIA GeForce RTX 2080 Ti ((GPU)

NVIDIA V100(GPU)

NVIDIA RTX A5000(GPU)

NVIDIA RTX A6000(GPU)

NVIDIA GeForce RTX 3090(GPU)

Allen throughput (KHz)

Forward with UT

HybridSeeding+Matching without UT

The currently installed ∼200 RTX A5000 can handle the full detector input at 30MHz

October 25th, 2022 Standalone SciFi track reconstruction on GPU 13/ 16

Comparison to forward tracking with UT

0 20 40 60 80 100

310×

p [MeV]

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

LHCb simulationφφ→sB

 < 5ηLong from B, 2 <
VeloSciFi matching
forward with UT

0 1000 2000 3000 4000 5000
 [MeV]

T
p

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

LHCb simulationφφ→sB

 < 5ηLong from B, 2 <
VeloSciFi matching
forward with UT

2 3 4 5
η

0

0.2

0.4

0.6

0.8

1

E
ff

ic
ie

nc
y

LHCb simulationφφ→sB

 < 5ηLong from B, 2 <
VeloSciFi matching
forward with UT

Matching is more efficient at low p / pt and at high eta, since no explicit momentum

cuts are needed to meet throughput requirements.

October 25th, 2022 Standalone SciFi track reconstruction on GPU 14/ 16

Comparison to forward tracking with UT

0 20 40 60 80 100

310×

p [MeV]

0

0.02

0.04

0.06

0.08

0.1

0.12

G
ho

st
 r

at
e

LHCb Simulation

φφ→0
sB

VeloSciFi matching

forward with UT

0 1000 2000 3000 4000 5000
 [MeV]

T
p

0

0.05

0.1

0.15

0.2

0.25

0.3

G
ho

st
 r

at
e

LHCb Simulation
φφ→0

sB

VeloSciFi matching

forward with UT

2 4 6
η

0

0.2

0.4

0.6

0.8

1
G

ho
st

 r
at

e
LHCb Simulation

φφ→0
sB

VeloSciFi matching

forward with UT

Matching has more ghosts due to the absence of UT informations. Ghosts could be

killed when UT becomes available.

October 25th, 2022 Standalone SciFi track reconstruction on GPU 15/ 16

Conclusion

We developed a standalone algorithm to reconstruct tracks in the SciFi detector:

• fast enough to run in real-time on GPUs

• provides an alternative way of reconstructing long tracks in abscence of UT

• as efficient as the standard forward tracking with UT

• opens possibilities to reconstruct downstream tracks when UT become available

Our algorithm is currently being used in the commissioning of the detector and the

software trigger.

A standalone UT seeding and downstream matching is in development.

October 25th, 2022 Standalone SciFi track reconstruction on GPU 16/ 16

