Comparing and improving hybrid deep learning algorithms for identifying and locating primary vertices

S. Akar¹, M. Peters¹, H. Schreiner^{1,2}, M. D. Sokoloff¹, W. Tepe¹

University of Cincinnati¹, Princeton University²

Abstract

- LHCb's High Level Trigger will process 5 TB/s of data. Machine learning algorithms have the potential to improve fidelity and execute very quickly
- We are developing a hybrid deep learning algorithm to identify primary and secondary vertices in pp collisions
- Previous DNN models architecture and performances presented at
 - ACAT 19 J.Phys.Conf.Ser. 1525 (2020) 1, 012079
 - CDT 20 arXiv:2007.01023
 - CHEP 21 EPJ Web Conf. 251 (2021) 04012

Supported by NSF awards OAC-1740102 & OAC-1739772 and via sub-awards under Cooperative Agreement OAC-1836650

The Run 3 LHCb Detector & Baseline Trigger

Figure 2: Run 3 LHCb Trigger Schematic

A hybrid ML approach to finding primary vertices

Updated input features

Replaced input tracks information from IP (impact parameter) to error ellipsoid at point of closes approach (POCA) to beamline:

Each track represented as POCA-ellipsoid with 9 parameters defining central position (3 pars.) and volume/uncertainty (6 pars.)

State of the art architecture [implemented using PyTorch]

Target histograms as proxies to learn

Performances: predicted position and efficiency

Predicted PVs position:

- If from mean predicted hist
- ▶ small bias on $\Delta(z)$ of ~16 μ m

Efficiency:

• matched if true PV in $\pm 5 \sigma(z)$, with $\sigma(z)$ variance predicted hist

Performances evolution (Eff. vs FP rate) and ongoing studies

- First end-to-end (tracks-to-PVs) DNN algorithm with high efficiencies and improved false positive rate w.r.t. previous PV-finder models
- Ongoing deployment of inference engine in LHCb software stack
- Ongoing studies of PV-finder applications to other experimental conditions