
Conditioning Mass Constraint

• Enforce correct mass distribution by adding penalty term

𝐿𝑚𝑎𝑠𝑠 = 𝑚𝑔𝑒𝑛 −𝑚𝑐𝑜𝑛𝑑
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• Loss from latent space and input space:
𝐿𝑇𝑜𝑡 = ต𝐿𝑛𝑙𝑙

𝑙𝑎𝑡𝑒𝑛𝑡 𝑠𝑝𝑎𝑐𝑒

+ 𝜆 ⋅ 𝐿𝑚𝑎𝑠𝑠

𝑖𝑛𝑝𝑢𝑡 𝑠𝑝𝑎𝑐𝑒

• Jets of up to 30 particles (Kansal et al., arXiv/2106.11535)
• Variables relative to jet axis → Ԧ𝜂rel, 𝜙rel, Ԧ𝑝𝑇

rel = 𝑥 ∈ 𝑋

• Each particle tuple of 𝜂rel, 𝜙rel, 𝑝𝑇
rel → up to 90 features

• Events with fewer particles zero-padded
• Dataset from zenodo.org/record/6302454

• Particle clouds of variable sizes
• Global features (e.g. jet mass, total transverse momentum,..) 

crucial for analyses
• No straight-forward performance measure for generated data
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• Coupling layer split features in two sets → Parameters for 
transformation of one set from other

• Simple affine coupling layer:

𝑓 Ԧ𝑥 = ൝
Ԧ𝑥1
′ = Ԧ𝑥1

Ԧ𝑥2
′ = Ԧ𝑎 Ԧ𝑥1 ⊙ Ԧ𝑥2 + 𝑏( Ԧ𝑥1)

⇒ 𝑓−1 Ԧ𝑥′ = ൞

Ԧ𝑥1 = Ԧ𝑥′1

Ԧ𝑥2 =
Ԧ𝑥2
′ − 𝑏(𝑥′1)

Ԧ𝑎 Ԧ𝑥′1

• Parameters 𝑎, 𝑏 output of deep residual network
• Network parameters optimized by gradient descent on nLL
• Features permutated after each coupling layer
• In this study more complicated coupling layers

→ Rational Quadratic Splines

• Change of variables for probability distributions: 

𝑝𝑋 Ԧ𝑥 = 𝑝𝑍=f(X)( Ԧ𝑓𝜃 Ԧ𝑥 ) det
𝜕𝑓𝜃

𝜕 Ԧ𝑥

→ Makes Maximum Likelihood training (nLL)  viable:

𝐿𝑛𝑙𝑙 𝜃 = −σ𝑋 log( 𝑝𝑋 Ԧ𝑥
𝑢𝑛𝑘𝑛𝑜𝑤𝑛

) ณ=

Ԧ𝑧= Ԧ𝑓𝜃( Ԧ𝑥)

−σ𝑋 log(𝑝𝑍 Ԧ𝑧 ) + log det
𝜕𝑓𝜃

𝜕 Ԧ𝑥

• 𝑝𝑍 closed form (e.g. Gaussian), 𝑓 invertible
• Coupling layers candidates for invertible transformations
• Chaining together multiple coupling layers → Enhanced expressivity
• Generating: Sample known 𝑝𝑍 and apply inverse transformations
• Add noise  ∼ 𝒪 10−7 to zero-padded particles
• nflows implementation used - github.com/bayesiains/nflows

(1) DESY

• The Large Hadron collider (LHC) at CERN/Geneva probes fundamental particle physics
• Monte Carlo Simulations needed to test theories
• Uncertainty due to finite MC statistics always relevant for physics analyses
• MC slow ∼ 100 𝑠 per simulated event → previous run ∼ 1 billion events were simulated
• Using already ∼ 50 % of computing resources 
• Future Runs higher Luminosity → Even more simulations 
• Other ways for simulations needed

LHC & MC Simulations Jets 

• Jet = narrow cone of particles
• Jets abundant in hadron colliders → simulation crucial
• Different mother particles → different kinematical properties of constituents
• In this study: gluon, top- and light quark initiated jets
• Jets described by reconstructed momenta of constituents (𝑝𝑥 , 𝑝𝑦 , 𝑝𝑍)
• Alternatively more collider friendly variables (𝜂, 𝜙, 𝑝𝑇):

𝑝𝑥 = 𝑝𝑇 cos 𝜙 , 𝑝𝑦= 𝑝𝑇 sin 𝜙 , 𝑝𝑧 = 𝑝𝑇sinh 𝜂 , 𝜂 = −log
𝜃
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• Invariant jet mass, assuming mass of constituents is zero:

𝑚2 = ෍
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Input/Output Data ML Challenges

Goal
Learn 𝑝𝑋 𝑥 to generate synthetic data

Image from arXiv:2106.11535

Jet Mass Distribution modelled correctly Inclusive Distributions 𝜂, 𝜙, 𝑝𝑇 over all particles and all jets

𝜂, 𝜙, 𝑝𝑇 Distribution of particle with highest 𝑝𝑇

𝜙 Correlation between particles

𝑝𝑇 Correlation between particles

Results

• Additional inputs to neural networks in coupling layers
→ Needed during sampling

• Here: number of particles n, invariant mass 𝑚
• Conditioning enhances expressivity of flows and modelling

of global features

Coupling LayersNormalizing Flows

Vanilla Normalizing Flows

Global feature not modelled correctly

zenodo.org/record/6302454
http://www.github.com/bayesiains/nflows

