Mass Conditioned & Constrained Normalizing Flows for Particle Cloud Generation.

<u>Benno Käch¹, Dirk Krücker¹, Isabell Melzer-Pellmann¹, Moritz Scham¹, Simon Schnake¹</u>

Jets

- The Large Hadron collider (LHC) at CERN/Geneva probes fundamental particle physics
- Monte Carlo Simulations needed to test theories

LHC & MC Simulations

- Uncertainty due to finite MC statistics always relevant for physics analyses
- **MC** slow $\sim 100 s$ per simulated event \rightarrow previous run ~ 1 billion events were simulated
- Using already $\sim 50 \%$ of computing resources
- Future Runs higher Luminosity \rightarrow Even more simulations
- Other ways for simulations needed

- Jet = narrow cone of particles
- Jets abundant in hadron colliders \rightarrow simulation crucial
- Different mother particles \rightarrow different kinematical properties of constituents
- In this study: gluon, top- and light quark initiated jets
- Jets described by reconstructed momenta of constituents (p_x, p_y, p_z)
- Alternatively more collider friendly variables (η, ϕ, p_T) :
- $p_x = p_T \cos(\phi)$, $p_y = p_T \sin(\phi)$, $p_z = p_T \sinh(\eta)$, $\eta = -\log \frac{\theta}{2}$
- Invariant jet mass, assuming mass of constituents is zero:

$$L_{Tot} = \underbrace{L_{nll}}_{latent \ space} + \lambda \cdot \underbrace{L_{mass}}_{input \ spac}$$

(1) DESY

