

Full Quantum GAN Model for HEP Detector Simulations

ACAT 2022 Conference

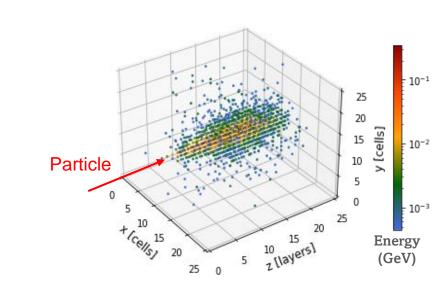
Florian Rehm [CERN, RWTH Aachen]

Sofia Vallecorsa [CERN], Michele Grossi [CERN], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY], Simon Schnake [DESY, RWTH Aachen], Alexis-Harilaos Verney-Provatas [DESY, RWTH Aachen]

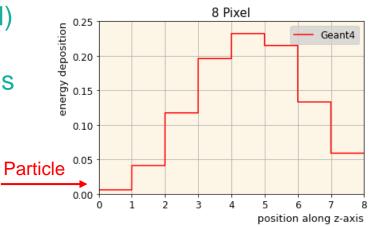
27/10/2022

Introduction

- Explore present performance and potential of quantum computing
 - "Quantum Advantage" not yet reached
 → initial investigations with pioneering work
- Use case: calorimeter simulations
 - Machine learning: Generative Adversarial Network (GAN) models can represent the fullsize 3D shower image
 - Quantum Computing: Generate simplified shower images
- In this study: Investigate a full quantum GAN model



downsampling



CERN Openlab

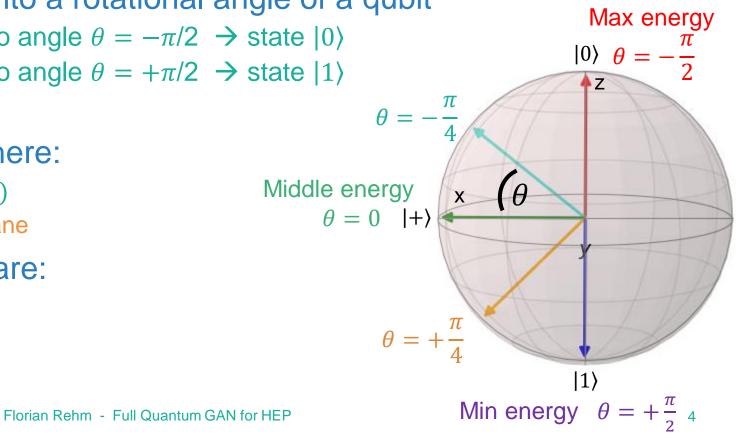
Angle Encoding - Decoding

Florian Rehm - Full Quantum GAN for HEP

Angle Encoding

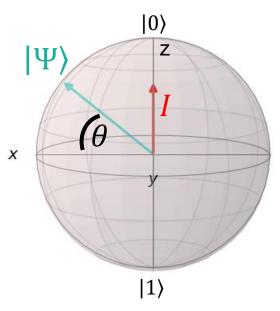
- Encoding transfers classical images into a quantum state
- Encode the pixel energy into a rotational angle of a qubit
 - Max. energy corresponds to angle $\theta = -\pi/2 \rightarrow \text{state } |0\rangle$
 - Min. energy corresponds to angle $\theta = +\pi/2 \rightarrow$ state $|1\rangle$
- Visualization on Bloch sphere:
 - For all states: y = 0 (φ = 0)
 → Moving only on the x-z-plane
- Implementation on hardware:
 - One H gate
 - One Ry gate

CERN openlab



Angle Decoding

- Decoding transfers quantum state into an energy
- Measure the quantum state of each qubit multiple times (= nb_{shots})
- Bloch sphere example:



🖥 🚅 openlab

Goal: Calculate angle θ of state $|\Psi\rangle$

- \rightarrow Measurements *M* of 1024 shots:
- \rightarrow Calculate z-axis intercept I (height): I =
- \rightarrow Calculate angle θ with trigonometry:

 $\frac{\#|0\rangle}{nb_{shots}} * 2 - 1 = \frac{954}{1024} * 2 - 1$ $M = \{0': 954, 1': 70\}$ I = 0.86 $\theta = -0.76 = \arcsin(I)$ with a predefined equation this can be transferred into an energy

Full Quantum GAN Model

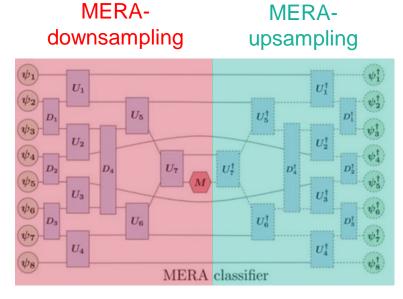
Florian Rehm - Full Quantum GAN for HEP

The Full Quantum GAN Model

- GAN approach: two models are adversarial trained
 - Generator: generates fake images
 - Discriminator: classifies images as true or fake images
- Full quantum GAN: quantum generator + quantum discriminator
 - Previous hybrid GAN models are employing a classical discriminator *
 - Parameter optimization during training happens classical
- For training and inference four distinct quantum circuits are required
 - Circuits provided on the following slides

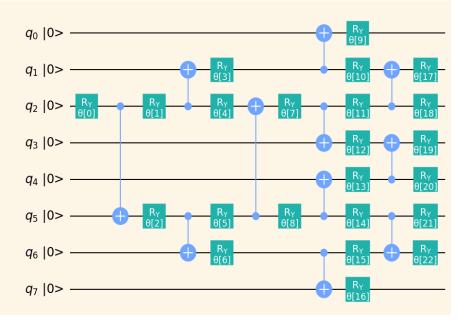
* Rehm, Florian, et al. "Quantum Machine Learning for HEP Detector Simulations." (2021).

Circuit Architectures

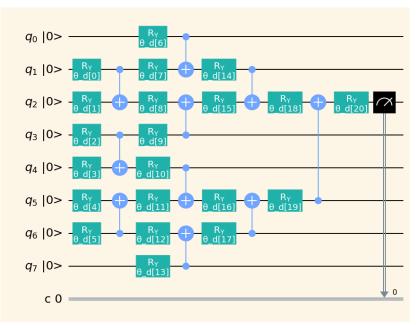


Grant, E., Benedetti, M., Cao, S. *et al.* **Hierarchical quantum classifiers**. *npj Quantum Inf* **4**, 65 (2018). https://doi.org/10.1038/s41534-018-0116-9

Generator: MERA-up



Discriminator: MERA-down

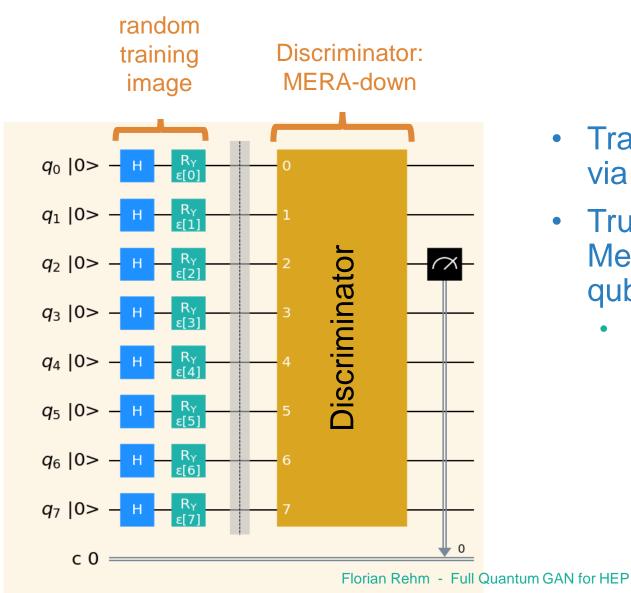


The unitary transformations consist of:

- Ry gates with trainable parameters
- Cx gates for enabeling entangling

cern openlab

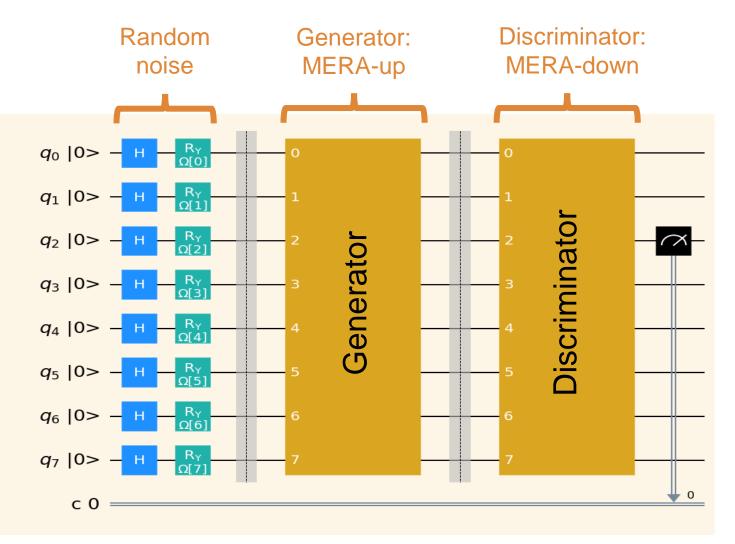
1. Train True Discriminator



openlab

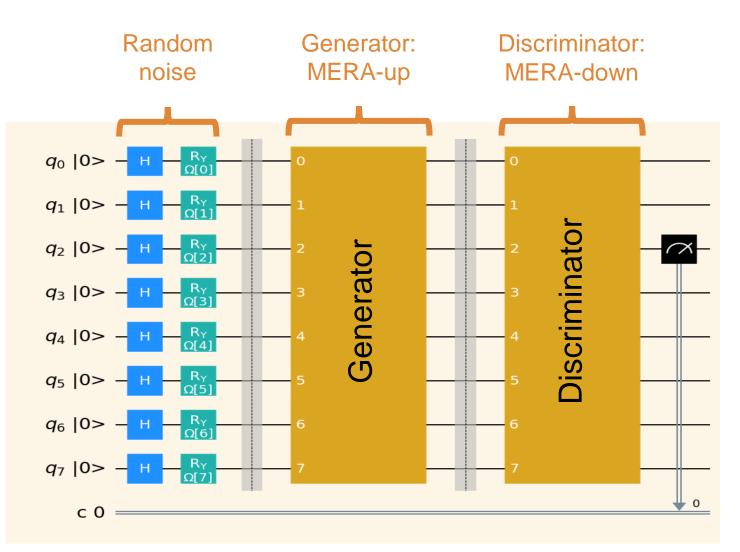
- Training image implemented via angle encoding
- True/Fake Probability: Measure the output of one qubit (q2)
 - Measure for multiple shots and count how often |1> is measured:
 - Probability close to 1
 corresponds to True image
 - Probability close to 0 corresponds to Fake image

2. Train Fake Discriminator



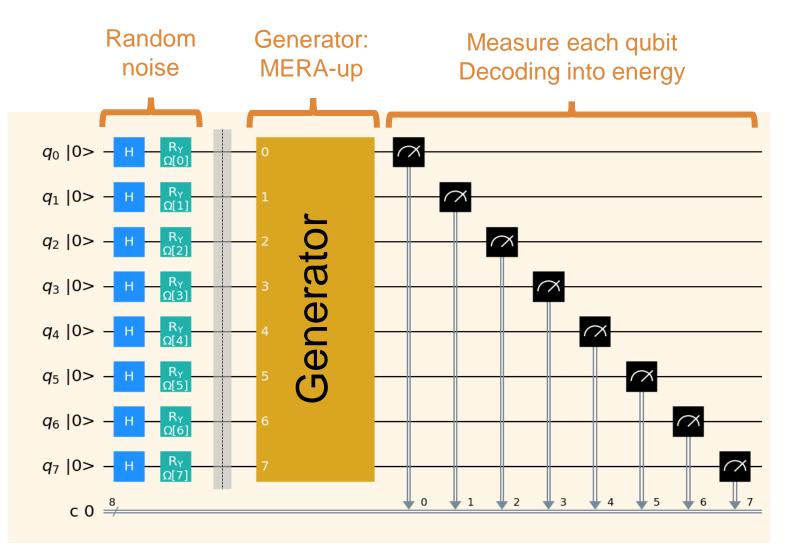
- Random noise
 implementation
- Generator parameters frozen
- Dicsriminator
 parameters trainable
- No conversion of the quantum image to classical required!

3. Train Generator



- Similar as discriminator fake training except:
 - Generator trainable
 - Discriminator frozen

4. Generate Events

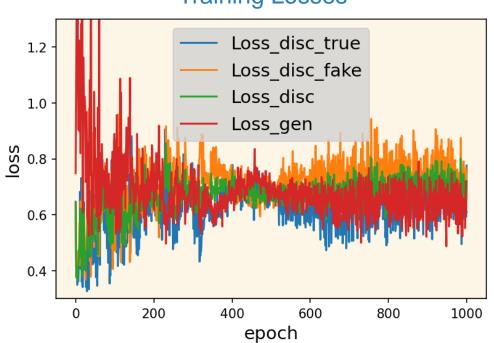


- Measure for
 multiple shots
- Angle decoding to convert measured angles into energies

Training Evaluation

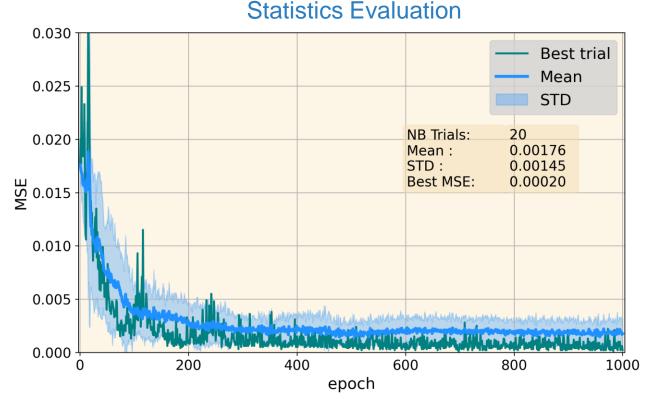
Florian Rehm - Full Quantum GAN for HEP

Training Results



Training Losses

- Losses of best trial oscillate a lot •
- At the end, generator and discriminator • loss convergence to equal values



- MSE as accuracy metrics: pixelwise computed ٠ between average true and fake data
- MSE's of all trials converge • \rightarrow stable training (due to extensive hyperparameter optimization)

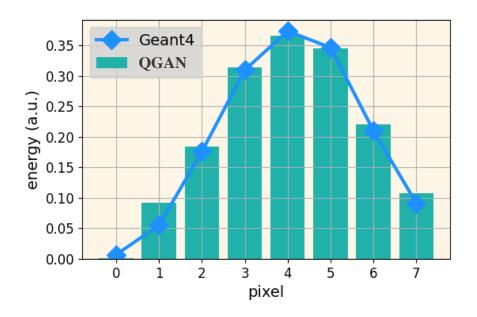
Florian Rehm - Full Quantum GAN for HEP

Inference Evaluation

Florian Rehm - Full Quantum GAN for HEP

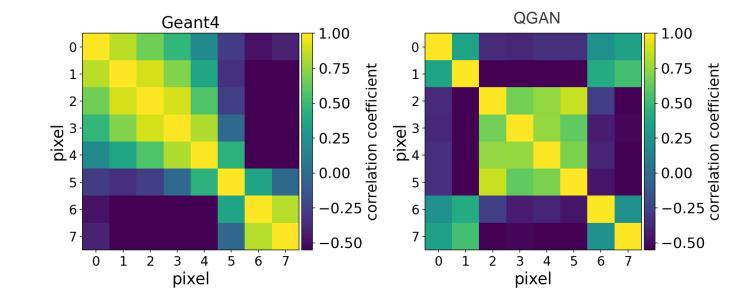
Inference Results

Average Shower Image



Good agreement between
 classical and quantum image

Pixelwise correlation



 Pixelwise correlation pattern cannot be represented by the full quantum GAN
 → topic for future studies

CERN Openlab

- Successful implementation of a full quantum GAN.
- Good accuracy accomplished for the average shower shape.
- Future work: investigate why the pixelwise correlations are not learned and try to improve.

Thank you for Listening!

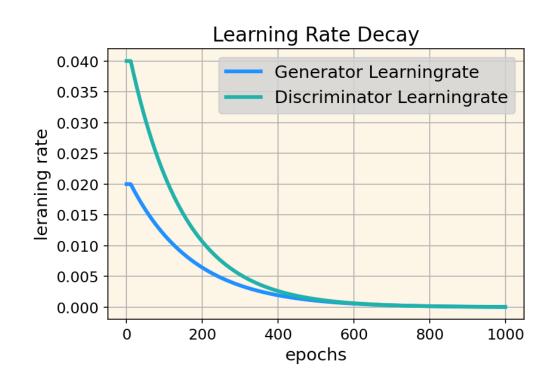
Full Quantum GAN Model for HEP Detector Simulations

Florian Rehm [CERN, RWTH Aachen]

Sofia Vallecorsa [CERN], Michele Grossi [CERN], Kerstin Borras [DESY, RWTH Aachen], Dirk Krücker [DESY], Simon Schnake [DESY, RWTH Aachen], Alexis-Harilaos Verney-Provatas [DESY, RWTH Aachen]

Training Hyperparameters

- Training for 1000 epochs
- Separate generator and discriminator learning rate
- Exponential learning rate decay
- Train the discriminator circuit 5 times more frequently than the generator
- Generator and discriminator parameters are zero-initialized
- Training with SPSA optimizer

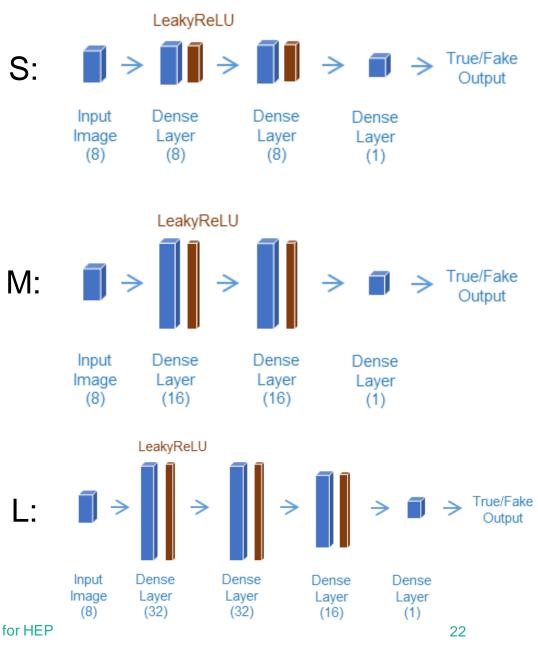


Hybrid Quantum GAN

Florian Rehm - Full Quantum GAN for HEP

Hybrid GAN

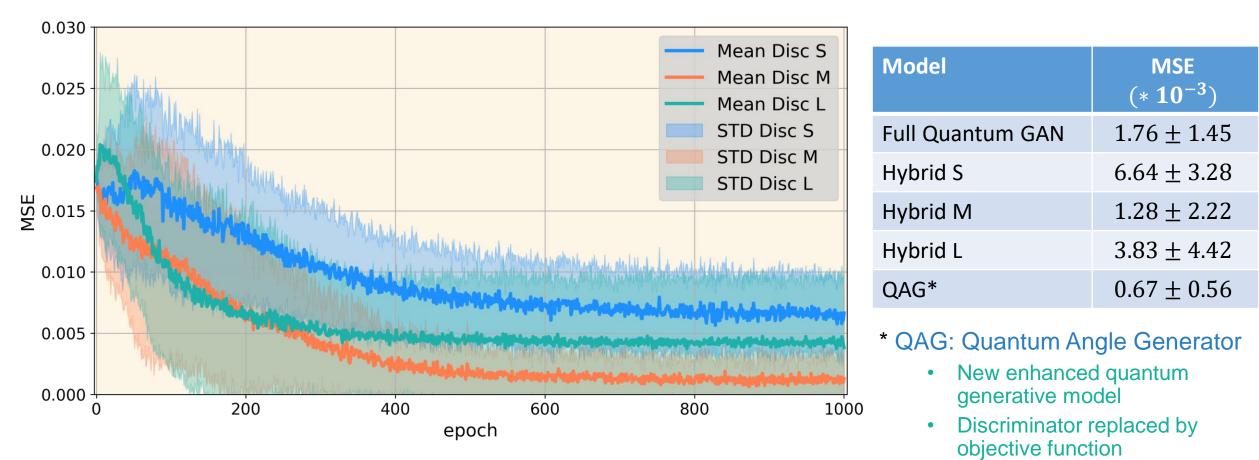
- Hybrid quantum-classical GAN
 - Quantum generator circuit
 - MERA-up architecture
 - Classical discriminator neural network
 - Consists of dense (fully connected) layers
 - Three discriminator sizes evaluated
 - S: 153 trainable parameters
 - M: 433 trainable parameters
 - L: 1889 trainable parameters



Hybrid GAN for comparison

CERN IIII CERN

Results Training



- Only the hybrid M model outperforms the full quantum GAN
 - Hybrid L model: not balanced, discriminator too powerful

cern in cern

Florian Rehm - Full Quantum GAN for HEP

Even able to correctly

correlation

represent the pixelwise