Improving robustness of jet tagging 1\%
algorithms with adversarial training

Presented at the 21st International Workshop on Advanced Computing and Analysis Techniques in Physics Research
Bari, Italy, 23r9-28th October, 2022.

Probing vulnerability of a nominal jet tagging algorithm with the Fast Gradient Sign Method (FGSM)

Goal of jet tagging algorithms: identify flavor of a jet’s initiating

particle (quark, gluon).

Exploit deep learning techniques, reliant on accurate simulation!
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Deep Neural Network (DNN)

Physics analysis: Can validate each 1D input distribution within
uncertainties. But what about mismodeled correlations?

Benchmark problem: apply adversarial attacks (e.g. FGSM) on

inputs => Introduce “invisible” mismodelings.
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Adversarial training as a defense strategy

- Inject distorted inputs already during training phase

- ldea: model never sees raw inputs - less likely to learn

simulation-specific artefacts

FOR N EPOCHS:

SPLIT WHOLE TRAINING SAMPLE INTO MINIBATCHES

FOR EVERY MINIBATCH:

DISTORT INPUTS (= APPLY FGSM) - -~ ~

EVALUATE MODEL (FORWARD)

COMPUTE LOSS (AND APPLY LOSS WEIGHTING)
ACCUMULATE GRADIENTS OF LOSS (BACKWARD)

UPDATE MODEL PARAMETERS
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Comparison of nominal and adversarial training strategy
-> difference: FGSM prior to backpropagation

- Expect higher

robustness and Dbetter

generalization by

introducing a saddle point problem — so, let's check if that is

Indeed the case!

- Evaluation compares predictions of two trainings for nominal and
systematically distorted test samples
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More training epochs lead to better performance — but at the
same time, the susceptibility towards adversarial attacks
Increases as well!
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What makes the adversarial training robust? Exploring flavor dependence & geometric properties of the attack and defense

Example: d, of first track,
(20% distortion cap removed
for visibility)

- Raw samples: filled histograms
- FGSM-distorted samples: lines

Physics:
- blc jets: positive d, (meson
secondary vertex)

- Light jets: d, peaks at zero
(and is symmetric)

What the FGSM attack does:

- In nominal training:
Pushes light to b/c (and vice
versa)

In adversarial training:
Exhibits suppressed flavor-
dependency
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- Nominal: Easy choice of direction for FGSM attack to
“confuse” the classifier

loss surface: adversarial training

Adversarially trained model expected to be less vulnerable to mismodelings in simulation
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Conclusion

- Small disturbances of the inputs => noticeable performance drops =

applicable & concerning for High Energy Physics

- Increased model performance comes with higher susceptibility towards

adversarial attacks

- Robustness improves with adversarial training

Next steps

Test also on detector data and investigate generalization capability

Apply to more complex NN structures (e.g. convolutional, or graph NN)

Check vulnerability as a function of input feature space dimension

Use more harmful attacks and build stronger defense (e.g. train against
Projected Gradient Descent, PGD)

More details in:
Comput Softw Big Sci 6 (2022) 15

Click me!

[1] Reproduced from work created and shared by Google and used according to terms described in the Creative Commons 4.0 Attribution License. (https://www.tensorflow.org/tutorials/generative/adversarial_fgsm). Labrador Retriever by Mirko CC-BY-SA 3.0 from Wikimedia Commons.
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