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❑ Introduction:

❑ The BESⅢ experiment

❑ The dE/dx simulation, reconstruction, calibration in 
the BESⅢ

❑ dE/dx simulation with ML method

❑ dE/dx prediction with ML method

❑ Summary



The BEPCⅡ and the BESⅢ

❖ The Beijing Electron Collider Ⅱ (BEPCⅡ) is a high luminosity e+e−

collider with center mass-energy from 2 to 4.6 GeV

❖ The BESⅢ experiment at BEPCⅡ focuses on tau-charm physics. 
Such as non-perturbative QCD, exotic hadrons, BSM

❖ The BESⅢ has accumulated an unprecedented amount of dataset 
in this energy region. For example, 10B J/psi data
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Offline software for the BESⅢ
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ROOT Geant4 Python

MYSQL CLHEP CERNLIB

External libraries & tools

Gaudi Framework

Core software

Generator Simulation

Digitization Calibration

Reconstruction Application

❑ BOSS (BESⅢ offline software system) 
software structure

❑ External libraries:

❑ Geant4: detector simulation, particle 
propagation (decay) in the detector, 
interaction with detector material, … 

❑ ROOT, Python, …

❑ Core software:

❑ Gaudi framework: defines interfaces 
to all software components and 
controls their execution

❑ Applications (BESⅢ-specific software):

❑ Generator

❑ Gean4 simulation

❑ Digitization

❑ Calibration 

❑ Reconstruction



PID in the BESⅢ

❖ For some analyses, the statistic uncertainty is small enough, and 
the systematic uncertainties become dominant. One of the most 
important systematic uncertainty is from particle identification 
(PID) 

❖ The PID is essential for the BESⅢ experiment. Almost all analyses 
need it. It used to identify the particle to be one of it: 
e, μ, π, K, proton

❖ For π, K, proton, the identification mainly relies on the dE/dx and 
the Time of flight (TOF)

❖ dE/dx:

❖ TOF: v =
L

tof
, m = p

1

β2 − 1

❖ This presentation will focus on the dE/dx, similar study can be 
done for the TOF
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dE/dx simulation and reconstruction
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Simulation Reconstruction 

G4Step

Particle’s 𝛾𝛽,𝜃,charge

Sampling dE/dx

dE/dx distribution histograms 

in different bins (𝛾𝛽,𝜃,charge)

The corrections will be explained in next slide



dE/dx corrections

❖ To get unbiased dE/dx measurements

❖ Hit level corrections: 

⚫ Run by run: due to the changes in gas 
pressure and temperature

⚫ Wire by wire: different drift chamber cell 
size, geometry, high voltage of signal wire, 
the radius of the signal wire

⚫ Doca and entrance angle: different drift 
distance of ionized electron to signal wire, 
non-uniform electromagnetic field

❖ Track level corrections: 

⚫ Space charge effect depends on cosθ and 
dE/dx itself. smaller cosθ or larger dE/dx 
will have a larger space charge effect 7



dE/dx calibration

❖ Using reconstructed dE/dx of different particles, calibrating the 
expected dE/dx vs βγ, and the 𝜎 of dE/dx vs dE/dx (cosθ, nhit)
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❖ Using χdE/dx for PID:χdE/dx =
|(

dE

dx
)obs−(

dE

dx
)exp|

σdE/dx

❖ This method has been smoothly working for 
many years, while there is still space for 
improving, especially for hadrons (π, K, proton)

 The key is to improve the simulation of dE/dx

kaon

dE/dx PID eff.



Simulation by machine learning
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❖ Machine learning (ML) technology has the ability to learn the 
complex relationship between data. It is already widely used in 
HEP:

⚫ Jet tagging, particle identification, S/B separation, …

❖ Doing simulation (or generation) using ML is developing quickly. 
In HEP many studies are ongoing:

❖ Currently, BESIII owns massive real data and it is advantaged to 
utilize ML technology to do data-driven simulation at the BESIII

arXiv:1901.00875
Jet simulation

Event generation

arXiv:2106.05285

Calorimeter simulation

Calorimeter simulation

arXiv:2112.09709

https://indico.cern.ch/event/973140/contributions/4103763/attachments/2147965/3620920/Sparse%20Data%20Generation%20IML%20Meeting%2023_11.pdf


dE/dx simulation using ML

❖ Here we perform the dE/dx simulation using ML at track level, 
comparing to hit level simulation, it is easier and still precise 
enough

❖ 1, Learning the dE/dx distribution as function of momentum 
(prec_track ), polar angle (θrec_track), number of hits (nHitrec_track) of 
reconstructed track from experiment data

⚫ Will be done by neutral network

❖ 2, Check the consistent of dE/dx distribution between data and 
simulation

❖ 3, Check the agreement of dE/dx PID efficiency between data and 
simulation
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Dataset

❖ Dataset, 2018 J/ψ : 

⚫ π± :  J/ψ ⟶ ρπ ⟶ πππ

⚫ K± :  J/ψ ⟶ KS
0K±π∓ ⟶ Kπππ

⚫ p± :  J/ψ ⟶ ppππ

❖ The training data is smoothed in momentum and θ dimensions
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π+
K+ p+

π+ π− K+ K− 𝐩+ 𝐩−

Training data 1M 1M 0.5M 0.5M 2M 2M

Testing data 0.4M 0.4M 0.2M 0.2M 0.9M 0.9M



ML for dE/dx simulation
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Data

dE/dx

Sampled

dE/dx

1 dim 

Base dist.

N(0,1)

Inference 

Training

MADE

Block

prec_track

θrec_track

nHitrec_track

RQS

MADE

Block

prec_track

θrec_track

nHitrec_track

RQS

…

Base distribution Number of 

MADE blocks

Layer sizes Number of 

RQS bins
input hidden output

1-dim 

Standard Normal

6 64 3×64 23 8

❖ The Normalizing Flow is adopted:

⚫ Learning bijective transformation between two distributions(e.g. dE/dx ~ N(0,1))

⚫ Comparing to GAN, it is much easier to training (stable and convergent)

⚫ Reference to the CaloFlow, a similar model is used, RQS (for 
transformation)+MADE block (for the parameters of RQS)

https://arxiv.org/pdf/2106.05285.pdf
https://arxiv.org/abs/1502.03509


Simulation performance (π+)
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NNData

dE/dx vs P

dE/dx vs θ

❖ Simulated dE/dx 
distribution is very 
similar to the data

❖ π− in backup



Simulation performance (π+)
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P:0.7-0.8 GeV P:0.8-0.9 GeV θ:20° − 30° θ:30° − 40°

❖ Simulated dE/dx distribution is very similar to the data

❖ π− in backup



dE/dx PID performance (π+)
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❖ new MC (from NN simulation) has better agreement with data

mis-PID as K mis-PID as p

mis-PID as p

mis-PID as K



Simulation performance (K+)
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NNData

dE/dx vs P

dE/dx vs θ

❖ Simulated dE/dx 
distribution is very 
similar to the data

❖ 1 dim. plots in backup

❖ K− in backup



dE/dx PID performance (K+)
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❖ new MC (from NN simulation) has better agreement with data

mis-PID as 𝜋 mis-PID as p mis-PID as 𝜋 mis-PID as p



Simulation performance (p+)
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NNData

dE/dx vs P

dE/dx vs θ

❖ Simulated dE/dx 
distribution is very 
similar to the data

❖ 1 dim. plots in backup

❖ p− in backup



dE/dx PID performance (p+)
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❖ For low momentum regions, the dE/dx changes 
sharply, and the space charge corrections do not 
work very well (specially for |cosθ| close to 0 ), 
making part of samples have large | 𝜒𝑑𝐸/𝑑𝑥 | (>4), 
which causes the loss of dE/dx PID efficiency

0.25-0.3 GeV

0.25-0.3 GeV



dE/dx prediction

❖ To solve the problem in low momentum region, one 
should give the expected dE/dx and σdE/dx according to 
the βγ, θrec_track, and nHitrec_track of reconstructed track

❖ Traditional fitting method is not easy to simultaneously 
fit dE/dx (and σdE/dx) with βγ, θrec_track, and nHitrec_track

❖ For deep learning, it is typically a regression problem:

⚫ Predicting expected dE/dx and σdE/dx according to βγ, θrec_track, 
and nHitrec_track
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ML for dE/dx prediction

❖ Model: fully connected neural network
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Model Input data Layer sizes Output 

data
input hidden output

Predict expected 

dE/dx

prec_track

θrec_track

nHitrec_track

3 3× 814 1 Expected 

dE/dx

Predict σdE/dx prec_track

θrec_track

nHitrec_track

3 3× 814 1 σdE/dx

optimizer:  Adam

Loss: L1Loss

❖ Dataset:

⚫ By using the previous trained dE/dx 
simulation flow, the dE/dx distribution can 
be generated for different prec_track, θrec_track, 
and nHitrec_track

⚫ Then fitting the generated dE/dx 
distribution with Gaussian to obtain the 
expected dE/dx and σdE/dx



dE/dx PID performance for p+

After using the expected 
dE/dx and σdE/dx from NN, 
the PID efficiency in data and 
new MC is recover to >99% 
in low momentum region
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dE/dx PID eff. vs P

dE/dx PID eff. vs θ

before after



Summary

❖ This talk presented the dE/dx simulation based on 
Normalizing Flow by using experiment data sample

❖ The simulated dE/dx has very high fidelity, and the 
final systematic uncertainty of dE/dx PID is reduced to 
~1% in overall

❖ The prediction of expected dE/dx and σdE/dx using NN 
is developed which aims to solve the lost of dE/dx PID 
efficiency for proton(anti) at low momentum region

❖ Using the expected dE/dx and σdE/dx from NN, the 
dE/dx PID efficiency for proton(anti) at low 
momentum region can be recovered to ~100%
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Summary and plan

❖ The study of dE/dx simulation using deep learning technique is 
presented

❖ It is shown that the dE/dx distribution of real data can be learnt 
by neutral network 

❖ The dE/dx PID efficiency agreements between data and 
simulation for 𝜋±, 𝐾± and 𝑝± are improved by this method

❖ Future plan:

⚫ Mis-indentificated efficiency (sample impure effect)

⚫ GNN, low Pt region, different physics channels, PID efficiency code public

⚫ Mean truncate -> ML method ?

⚫ Tuning the network to get better performance

⚫ Check the performance of this method for leptons (e and muon)

⚫ Perform more detailed dE/dx simulation which is at hit level 

Perform the study using real data from different years
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Dataset

❖ Dataset, 2018 𝐽/𝜓 : 

⚫ 𝜋± :  𝐽/𝜓 ⟶ 𝜌𝜋 ⟶ 𝜋𝜋𝜋

⚫ 𝐾± :  𝐽/𝜓 ⟶ 𝐾𝑆
0𝐾±𝜋∓ ⟶ 𝐾𝜋𝜋𝜋

⚫ 𝑝± :  𝐽/𝜓 ⟶ 𝑝𝑝𝜋𝜋

❖ The training data is smoothed in momentum and θ dimensions
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𝜋−
𝐾−

𝑝−



Simulation performance (pi-)
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Pi- NN Pi- data



Simulation performance (pi-)
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P:0.8-0.9 GeV P:0.9-1.0 GeV 𝜃:20° − 30° 𝜃:30° − 40°



Simulation performance (pi-)
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Simulation performance (K+)
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P:0.7-0.8 GeV P:0.8-0.9 GeV θ:20° − 30° θ:30° − 40°

❖ Simulated dE/dx distribution is very similar to the data

❖ K− in backup



Simulation performance (K-)
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K- NN K- data



Simulation performance (K-)
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Simulation performance (p+)
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P:0.3-0.4 GeV P:0.4-0.5 GeV θ:20° − 30° θ:30° − 40°

❖ Simulated dE/dx distribution is very similar to the data

❖ p− in backup



Simulation performance (p-)
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p- NN p- data



Simulation performance (p-)
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before after

after
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