

中國科學院為能物昭納完備 Institute of High Energy Physics Chinese Academy of Sciences

Accurate dE/dx simulation and prediction using ML method in the BESIII experiment

Tong Chen^a, <u>Wenxing Fang^a</u>, Xiaobin Ji^a, Weidong Li^a, Xiaoling Li^b, Tao Lin^a, Fang Liu^a, Jinfa Qiu^a, Shengsen Sun^a, Kai Zhu^a

^a Institute of High Energy Physics, Beijing 100049, People's Republic of China

^b Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, China

21th International Workshop on Advanced Computing and Analysis Techniques in Physics Research

Outline

Introduction:

- □ The BESⅢ experiment
- The dE/dx simulation, reconstruction, calibration in the BESIII
- dE/dx simulation with ML method
- dE/dx prediction with ML method
- Summary

The BEPCII and the BESII

- ◆ The Beijing Electron Collider Ⅱ (BEPCⅡ) is a high luminosity e⁺e⁻ collider with center mass-energy from 2 to 4.6 GeV
- The BESIII experiment at BEPCII focuses on tau-charm physics. Such as non-perturbative QCD, exotic hadrons, BSM
- The BESII has accumulated an unprecedented amount of dataset in this energy region. For example, 10B J/psi data

Offline software for the BESII

- BOSS (BESII offline software system) software structure
 - External libraries:
 - Geant4: detector simulation, particle propagation (decay) in the detector, interaction with detector material, ...
 - **ROOT**, Python, ...
 - Core software:
 - Gaudi framework: defines interfaces to all software components and controls their execution
 - □ Applications (BESⅢ-specific software):
 - Generator
 - Gean4 simulation
 - Digitization
 - Calibration
 - Reconstruction

Generator	Simulation					
Digitization	Calibration					
Reconstruction	Application					
·						
Gaudi Framework						
Core software						
ROOT Geant	4 Python					
MYSQL CLHE	PCERNLIB					
External libraries & tools						

PID in the BESII

- For some analyses, the statistic uncertainty is small enough, and the systematic uncertainties become dominant. One of the most important systematic uncertainty is from particle identification (PID)
- The PID is essential for the BESII experiment. Almost all analyses need it. It used to identify the particle to be one of it: e, μ, π, K, proton
- For π, K, proton, the identification mainly relies on the dE/dx and the Time of flight (TOF)

• **dE/dx:**
$$\frac{dE}{dx} = D \frac{z^2}{m_e \beta^2} \left[\ln(\frac{2m_e c^2 T_{max}}{I^2} \beta^2 \gamma^2) - 2\beta^2 - \delta \right]$$

• TOF:
$$v = \frac{L}{tof}$$
, $m = p\sqrt{\frac{1}{\beta^2} - 1}$

 This presentation will focus on the dE/dx, similar study can be done for the TOF

dE/dx simulation and reconstruction

The corrections will be explained in next slide

dE/dx corrections

- To get unbiased dE/dx measurements
- Hit level corrections:
 - Run by run: due to the changes in gas pressure and temperature
 - Wire by wire: different drift chamber cell size, geometry, high voltage of signal wire, the radius of the signal wire
 - Doca and entrance angle: different drift distance of ionized electron to signal wire, non-uniform electromagnetic field
- Track level corrections:
 - Space charge effect depends on cosθ and dE/dx itself. smaller cosθ or larger dE/dx will have a larger space charge effect

dE/dx calibration

Using reconstructed dE/dx of different particles, calibrating the * expected dE/dx vs $\beta\gamma$, and the σ of dE/dx vs dE/dx (cos θ , nhit)

Simulation by machine learning

- Machine learning (ML) technology has the ability to learn the complex relationship between data. It is already widely used in HEP:
 - Jet tagging, particle identification, S/B separation, ...
- Doing simulation (or generation) using ML is developing quickly. In HEP many studies are ongoing:

 Currently, BESIII owns massive real data and it is advantaged to utilize ML technology to do data-driven simulation at the BESIII

dE/dx simulation using ML

- Here we perform the dE/dx simulation using ML at track level, comparing to hit level simulation, it is easier and still precise enough
- 1, Learning the dE/dx distribution as function of momentum (p_{rec_track}), polar angle (θ_{rec_track}), number of hits (nHit_{rec_track}) of reconstructed track from experiment data
 - Will be done by neutral network
- 2, Check the consistent of dE/dx distribution between data and simulation
- 3, Check the agreement of dE/dx PID efficiency between data and simulation

Dataset

- Dataset, 2018 J/ψ:
 - π^{\pm} : $J/\psi \rightarrow \rho \pi \rightarrow \pi \pi \pi$
 - $K^{\pm}: J/\psi \to K^0_S K^{\pm} \pi^{\mp} \to K \pi \pi \pi$
 - p^{\pm} : $J/\psi \rightarrow pp\pi\pi$
- The training data is smoothed in momentum and θ dimensions

ML for dE/dx simulation

- The Normalizing Flow is adopted:
 - Learning bijective transformation between two distributions(e.g. dE/dx ~ N(0,1))
 - Comparing to GAN, it is much easier to training (stable and convergent)
 - Reference to the <u>CaloFlow</u>, a similar model is used, RQS (for transformation)+<u>MADE</u> block (for the parameters of RQS)

Simulation performance (π^+)

Simulated dE/dx

distribution is very similar to the data

• π^- in backup

dE/dx vs P

dE/dx vs θ

Simulation performance (π^+)

- Simulated dE/dx distribution is very similar to the data
- π^- in backup

dE/dx PID performance (π^+)

new MC (from NN simulation) has better agreement with data ¹⁵

 π^+ dE/dx mis-PID as K

Simulation performance (K⁺)

dE/dx vs P

- Simulated dE/dx distribution is very similar to the data
- 1 dim. plots in backup
- ✤ K⁻ in backup

dE/dx PID performance (K⁺)

new MC (from NN simulation) has better agreement with data ¹⁷

Simulation performance (p⁺)

 dE/dx vs P
Simulated dE/dx distribution is very similar to the data

- 1 dim. plots in backup
- ♦ p⁻ in backup

dE/dx PID performance (p⁺)

 For low momentum regions, the dE/dx changes sharply, and the space charge corrections do not work very well (specially for |cosθ| close to 0), making part of samples have large | χ_{dE/dx} | (>4), which causes the loss of dE/dx PID efficiency

dE/dx prediction

- ★ To solve the problem in low momentum region, one should give the expected dE/dx and σ_{dE/dx} according to the βγ, θ_{rec_track}, and nHit_{rec_track} of reconstructed track
- Traditional fitting method is not easy to simultaneously fit dE/dx (and $\sigma_{dE/dx}$) with βγ, θ_{rec_track} , and nHit_{rec_track}
- For deep learning, it is typically a regression problem:
 - Predicting expected dE/dx and $\sigma_{dE/dx}$ according to $\beta\gamma$, θ_{rec_track} , and $nHit_{rec_track}$

ML for dE/dx prediction

Dataset:

- By using the previous trained dE/dx simulation flow, the dE/dx distribution can be generated for different p_{rec_track}, θ_{rec_track}, and nHit_{rec_track}
- Then fitting the generated dE/dx distribution with Gaussian to obtain the expected dE/dx and $\sigma_{dE/dx}$

Model: fully connected neural network

Model	Input data	Layer sizes			Output
		input	hidden	output	data
Predict expected dE/dx	p _{rec_track} θ _{rec_track} nHit _{rec_track}	3	3 × 814	1	Expected dE/dx
Predict $\sigma_{dE/dx}$	p _{rec_track} θ _{rec_track} nHit _{rec_track}	3	3 × 814	1	$\sigma_{dE/dx}$

optimizer: Adam Loss: L1Loss

dE/dx PID performance for p⁺

dE/dx PID eff. vs P

After using the expected dE/dx and $\sigma_{dE/dx}$ from NN, the PID efficiency in data and new MC is recover to >99% in low momentum region

Summary

- This talk presented the dE/dx simulation based on Normalizing Flow by using experiment data sample
- The simulated dE/dx has very high fidelity, and the final systematic uncertainty of dE/dx PID is reduced to ~1% in overall
- The prediction of expected dE/dx and σ_{dE/dx} using NN is developed which aims to solve the lost of dE/dx PID efficiency for proton(anti) at low momentum region
- Using the expected dE/dx and σ_{dE/dx} from NN, the dE/dx PID efficiency for proton(anti) at low momentum region can be recovered to ~100%

Thanks for your attention !

Summary and plan

- The study of dE/dx simulation using deep learning technique is presented
- It is shown that the dE/dx distribution of real data can be learnt by neutral network
- The dE/dx PID efficiency agreements between data and simulation for π^{\pm} , K^{\pm} and p^{\pm} are improved by this method
- Future plan:
 - Mis-indentificated efficiency (sample impure effect)
 - GNN, low Pt region, different physics channels, PID efficiency code public
 - Mean truncate -> ML method ?
 - Tuning the network to get better performance
 - Check the performance of this method for leptons (e and muon)
 - Perform more detailed dE/dx simulation which is at hit level

Dataset

- Dataset, 2018 J/ψ :
 - $\pi^{\pm}: J/\psi \longrightarrow \rho \pi \longrightarrow \pi \pi \pi$
 - $K^{\pm}: J/\psi \longrightarrow K^0_S K^{\pm} \pi^{\mp} \longrightarrow K \pi \pi \pi$
 - $p^{\pm}: J/\psi \rightarrow pp\pi\pi$
- The training data is smoothed in momentum and θ dimensions

Simulation performance (pi-)

Simulation performance (pi-)

 θ :30° - 40°

400 450 500

350

+ Data

+NN

550 600

dedx

29

Simulation performance (pi-)

Simulation performance (K⁺)

- Simulated dE/dx distribution is very similar to the data
- ✤ K⁻ in backup

Simulation performance (K-)

60 80 100 120 140 160 180

θ (degree)

50

400

200

0

20 40

K- data

Simulation performance (K-)

Simulation performance (p⁺)

Simulated dE/dx distribution is very similar to the data

♦ p⁻ in backup

Simulation performance (p-)

p- NN

Simulation performance (p-)

15 chi_dedx_p_p

1

2

3

1

Output layer

htemp Entries 62240 Mean 0.1834 Std Dev 1.138

Acknowledgement

- The work has been performed in collaboration with AIDAinnova (funded by the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 101004761)
- CAS Center for Excellence in Particle Physics
- Ministry of Science and Technology of the People's Republic of China

Thanks for your attention !

