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❑ Introduction:

❑ The BESⅢ experiment

❑ The dE/dx simulation, reconstruction, calibration in 
the BESⅢ

❑ dE/dx simulation with ML method

❑ dE/dx prediction with ML method

❑ Summary



The BEPCⅡ and the BESⅢ

❖ The Beijing Electron Collider Ⅱ (BEPCⅡ) is a high luminosity e+e−

collider with center mass-energy from 2 to 4.6 GeV

❖ The BESⅢ experiment at BEPCⅡ focuses on tau-charm physics. 
Such as non-perturbative QCD, exotic hadrons, BSM

❖ The BESⅢ has accumulated an unprecedented amount of dataset 
in this energy region. For example, 10B J/psi data
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Offline software for the BESⅢ
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ROOT Geant4 Python

MYSQL CLHEP CERNLIB

External libraries & tools

Gaudi Framework

Core software

Generator Simulation

Digitization Calibration

Reconstruction Application

❑ BOSS (BESⅢ offline software system) 
software structure

❑ External libraries:

❑ Geant4: detector simulation, particle 
propagation (decay) in the detector, 
interaction with detector material, … 

❑ ROOT, Python, …

❑ Core software:

❑ Gaudi framework: defines interfaces 
to all software components and 
controls their execution

❑ Applications (BESⅢ-specific software):

❑ Generator

❑ Gean4 simulation

❑ Digitization

❑ Calibration 

❑ Reconstruction



PID in the BESⅢ

❖ For some analyses, the statistic uncertainty is small enough, and 
the systematic uncertainties become dominant. One of the most 
important systematic uncertainty is from particle identification 
(PID) 

❖ The PID is essential for the BESⅢ experiment. Almost all analyses 
need it. It used to identify the particle to be one of it: 
e, μ, π, K, proton

❖ For π, K, proton, the identification mainly relies on the dE/dx and 
the Time of flight (TOF)

❖ dE/dx:

❖ TOF: v =
L

tof
, m = p

1

β2 − 1

❖ This presentation will focus on the dE/dx, similar study can be 
done for the TOF
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dE/dx simulation and reconstruction
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Simulation Reconstruction 

G4Step

Particle’s 𝛾𝛽,𝜃,charge

Sampling dE/dx

dE/dx distribution histograms 

in different bins (𝛾𝛽,𝜃,charge)

The corrections will be explained in next slide



dE/dx corrections

❖ To get unbiased dE/dx measurements

❖ Hit level corrections: 

⚫ Run by run: due to the changes in gas 
pressure and temperature

⚫ Wire by wire: different drift chamber cell 
size, geometry, high voltage of signal wire, 
the radius of the signal wire

⚫ Doca and entrance angle: different drift 
distance of ionized electron to signal wire, 
non-uniform electromagnetic field

❖ Track level corrections: 

⚫ Space charge effect depends on cosθ and 
dE/dx itself. smaller cosθ or larger dE/dx 
will have a larger space charge effect 7



dE/dx calibration

❖ Using reconstructed dE/dx of different particles, calibrating the 
expected dE/dx vs βγ, and the 𝜎 of dE/dx vs dE/dx (cosθ, nhit)
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❖ Using χdE/dx for PID:χdE/dx =
|(

dE

dx
)obs−(

dE

dx
)exp|

σdE/dx

❖ This method has been smoothly working for 
many years, while there is still space for 
improving, especially for hadrons (π, K, proton)

 The key is to improve the simulation of dE/dx

kaon

dE/dx PID eff.



Simulation by machine learning
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❖ Machine learning (ML) technology has the ability to learn the 
complex relationship between data. It is already widely used in 
HEP:

⚫ Jet tagging, particle identification, S/B separation, …

❖ Doing simulation (or generation) using ML is developing quickly. 
In HEP many studies are ongoing:

❖ Currently, BESIII owns massive real data and it is advantaged to 
utilize ML technology to do data-driven simulation at the BESIII

arXiv:1901.00875
Jet simulation

Event generation

arXiv:2106.05285

Calorimeter simulation

Calorimeter simulation

arXiv:2112.09709

https://indico.cern.ch/event/973140/contributions/4103763/attachments/2147965/3620920/Sparse%20Data%20Generation%20IML%20Meeting%2023_11.pdf


dE/dx simulation using ML

❖ Here we perform the dE/dx simulation using ML at track level, 
comparing to hit level simulation, it is easier and still precise 
enough

❖ 1, Learning the dE/dx distribution as function of momentum 
(prec_track ), polar angle (θrec_track), number of hits (nHitrec_track) of 
reconstructed track from experiment data

⚫ Will be done by neutral network

❖ 2, Check the consistent of dE/dx distribution between data and 
simulation

❖ 3, Check the agreement of dE/dx PID efficiency between data and 
simulation
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Dataset

❖ Dataset, 2018 J/ψ : 

⚫ π± :  J/ψ ⟶ ρπ ⟶ πππ

⚫ K± :  J/ψ ⟶ KS
0K±π∓ ⟶ Kπππ

⚫ p± :  J/ψ ⟶ ppππ

❖ The training data is smoothed in momentum and θ dimensions
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π+
K+ p+

π+ π− K+ K− 𝐩+ 𝐩−

Training data 1M 1M 0.5M 0.5M 2M 2M

Testing data 0.4M 0.4M 0.2M 0.2M 0.9M 0.9M



ML for dE/dx simulation
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Data

dE/dx

Sampled

dE/dx

1 dim 

Base dist.

N(0,1)

Inference 

Training

MADE

Block

prec_track

θrec_track

nHitrec_track

RQS

MADE

Block

prec_track

θrec_track

nHitrec_track

RQS

…

Base distribution Number of 

MADE blocks

Layer sizes Number of 

RQS bins
input hidden output

1-dim 

Standard Normal

6 64 3×64 23 8

❖ The Normalizing Flow is adopted:

⚫ Learning bijective transformation between two distributions(e.g. dE/dx ~ N(0,1))

⚫ Comparing to GAN, it is much easier to training (stable and convergent)

⚫ Reference to the CaloFlow, a similar model is used, RQS (for 
transformation)+MADE block (for the parameters of RQS)

https://arxiv.org/pdf/2106.05285.pdf
https://arxiv.org/abs/1502.03509


Simulation performance (π+)
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NNData

dE/dx vs P

dE/dx vs θ

❖ Simulated dE/dx 
distribution is very 
similar to the data

❖ π− in backup



Simulation performance (π+)
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P:0.7-0.8 GeV P:0.8-0.9 GeV θ:20° − 30° θ:30° − 40°

❖ Simulated dE/dx distribution is very similar to the data

❖ π− in backup



dE/dx PID performance (π+)
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❖ new MC (from NN simulation) has better agreement with data

mis-PID as K mis-PID as p

mis-PID as p

mis-PID as K



Simulation performance (K+)
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NNData

dE/dx vs P

dE/dx vs θ

❖ Simulated dE/dx 
distribution is very 
similar to the data

❖ 1 dim. plots in backup

❖ K− in backup



dE/dx PID performance (K+)
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❖ new MC (from NN simulation) has better agreement with data

mis-PID as 𝜋 mis-PID as p mis-PID as 𝜋 mis-PID as p



Simulation performance (p+)
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NNData

dE/dx vs P

dE/dx vs θ

❖ Simulated dE/dx 
distribution is very 
similar to the data

❖ 1 dim. plots in backup

❖ p− in backup



dE/dx PID performance (p+)
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❖ For low momentum regions, the dE/dx changes 
sharply, and the space charge corrections do not 
work very well (specially for |cosθ| close to 0 ), 
making part of samples have large | 𝜒𝑑𝐸/𝑑𝑥 | (>4), 
which causes the loss of dE/dx PID efficiency

0.25-0.3 GeV

0.25-0.3 GeV



dE/dx prediction

❖ To solve the problem in low momentum region, one 
should give the expected dE/dx and σdE/dx according to 
the βγ, θrec_track, and nHitrec_track of reconstructed track

❖ Traditional fitting method is not easy to simultaneously 
fit dE/dx (and σdE/dx) with βγ, θrec_track, and nHitrec_track

❖ For deep learning, it is typically a regression problem:

⚫ Predicting expected dE/dx and σdE/dx according to βγ, θrec_track, 
and nHitrec_track
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ML for dE/dx prediction

❖ Model: fully connected neural network
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Model Input data Layer sizes Output 

data
input hidden output

Predict expected 

dE/dx

prec_track

θrec_track

nHitrec_track

3 3× 814 1 Expected 

dE/dx

Predict σdE/dx prec_track

θrec_track

nHitrec_track

3 3× 814 1 σdE/dx

optimizer:  Adam

Loss: L1Loss

❖ Dataset:

⚫ By using the previous trained dE/dx 
simulation flow, the dE/dx distribution can 
be generated for different prec_track, θrec_track, 
and nHitrec_track

⚫ Then fitting the generated dE/dx 
distribution with Gaussian to obtain the 
expected dE/dx and σdE/dx



dE/dx PID performance for p+

After using the expected 
dE/dx and σdE/dx from NN, 
the PID efficiency in data and 
new MC is recover to >99% 
in low momentum region
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dE/dx PID eff. vs P

dE/dx PID eff. vs θ

before after



Summary

❖ This talk presented the dE/dx simulation based on 
Normalizing Flow by using experiment data sample

❖ The simulated dE/dx has very high fidelity, and the 
final systematic uncertainty of dE/dx PID is reduced to 
~1% in overall

❖ The prediction of expected dE/dx and σdE/dx using NN 
is developed which aims to solve the lost of dE/dx PID 
efficiency for proton(anti) at low momentum region

❖ Using the expected dE/dx and σdE/dx from NN, the 
dE/dx PID efficiency for proton(anti) at low 
momentum region can be recovered to ~100%
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Summary and plan

❖ The study of dE/dx simulation using deep learning technique is 
presented

❖ It is shown that the dE/dx distribution of real data can be learnt 
by neutral network 

❖ The dE/dx PID efficiency agreements between data and 
simulation for 𝜋±, 𝐾± and 𝑝± are improved by this method

❖ Future plan:

⚫ Mis-indentificated efficiency (sample impure effect)

⚫ GNN, low Pt region, different physics channels, PID efficiency code public

⚫ Mean truncate -> ML method ?

⚫ Tuning the network to get better performance

⚫ Check the performance of this method for leptons (e and muon)

⚫ Perform more detailed dE/dx simulation which is at hit level 

Perform the study using real data from different years
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Dataset

❖ Dataset, 2018 𝐽/𝜓 : 

⚫ 𝜋± :  𝐽/𝜓 ⟶ 𝜌𝜋 ⟶ 𝜋𝜋𝜋

⚫ 𝐾± :  𝐽/𝜓 ⟶ 𝐾𝑆
0𝐾±𝜋∓ ⟶ 𝐾𝜋𝜋𝜋

⚫ 𝑝± :  𝐽/𝜓 ⟶ 𝑝𝑝𝜋𝜋

❖ The training data is smoothed in momentum and θ dimensions
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𝜋−
𝐾−

𝑝−



Simulation performance (pi-)
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Pi- NN Pi- data



Simulation performance (pi-)
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P:0.8-0.9 GeV P:0.9-1.0 GeV 𝜃:20° − 30° 𝜃:30° − 40°



Simulation performance (pi-)
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Simulation performance (K+)
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P:0.7-0.8 GeV P:0.8-0.9 GeV θ:20° − 30° θ:30° − 40°

❖ Simulated dE/dx distribution is very similar to the data

❖ K− in backup



Simulation performance (K-)
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K- NN K- data



Simulation performance (K-)
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Simulation performance (p+)
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P:0.3-0.4 GeV P:0.4-0.5 GeV θ:20° − 30° θ:30° − 40°

❖ Simulated dE/dx distribution is very similar to the data

❖ p− in backup



Simulation performance (p-)
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p- NN p- data



Simulation performance (p-)
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before after

after
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