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Designed to search for exotic hybrid mesons produced in photoproduction reactions and 
study the hybrid meson spectrum

GlueX Experiment at Jefferson Lab
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GlueX Central Drift Chamber (CDC)

• Used to detect and track charged particles with 
momenta p > 0.25 GeV/c

• Use for particle identifcation

• dE/dx: measure of deposited energy per unit of track 
length

－1.5 m long x 1.2 m diameter cylinder

－3522 anode wires at 2125 V inside 1.6 cm diameter 
straws

－50:50 Ar/CO2 gas mix
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● Requires two calibrations: gain and drift time-

to-distance

○ Gain Correction Factor (GCF): 

○ GCF calibrations have most variation 

+/- 15%

● Has one control: operating voltage

deuteron
proton
K+

pi+



Conventional Calibration and Motivation for ML
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Conventional

● Calibrate: calibration values iteratively, produced 
after the experiment
○ ~2 hour runs

● Control: CDC operating voltage is fixed at 2125 V

Motivation: Conventional vs. Online, ML Calibration Paradigms

Online and ML

● Control: Stabilize detector response to changing 
environmental/experimental conditions by adjusting CDC 
HV

● Calibrate: online calibration values produced during the 
experiment

ML



Q1: Can we predict GCFs? Input variables

• Data extracted from Experimental 

Physics Industrial Controls System 

(EPICS)

－Atmospheric pressure

－Gas temperature

－Current drawn from CDC HV boards 

(proxy for beam current)

• Readily available during the experiment

• Not dependent on other detectors

• No reconstruction!
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Can we predict GCFs using data that are readily available as a run begins? 



Q1: Can we predict GCFs? The Gaussian process model
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ML Technique

Gaussian Process (GP)

● 3 input features

● 1 target: the traditional Gain 

Correction Factor (GCF)

● GP calculates PDF over admissible 

functions that fit the data

● GP provides the standard deviation

● We used a popular GP kernel: 
● Radial Basis Function + White

Illustration training a Gaussian process

We can exploit the standard deviation 
for uncertainty quantification (UQ).

RBF kernel
(length scale(s))

𝑹𝟐 RMSE Mean 
|% err|

Isotropic
(1.412)

0.97 0.002 0.8%

Anisotropic
(1.4,1.17,.171)

0.97 0.002 0.8%

Our goal was better than a 5% error



Q1: Can we predict GCFs? HV Recommendation

• GCF is related to HV

• Recommended HV setting obtained 
from fit to HV as a function of 
relative peak amplitude
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Q2: Can we control HV to stabilize gain? RoboCDC, a modular ML system for control
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Q2: Can we control HV to stabilize gain? Does RoboCDC work?
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Cosmic Ray Experiment

● Split the CDC into 2 halves
○ Leave one side at a fixed HV (conventional)
○ Let the ML control the other

■ Autonomously adjust HV every 5 min

Should see the ML side’s gains stabilized

Conventional in orange

ML-tuned in blue



Q2: Can we control HV to stabilize gain? Cosmic Ray Test Results
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Conventional in orange

ML-tuned in blue



Trust and Uncertainty Quantification

• Does the system generalize for differing conditions?

－Do we trust interpolations and extrapolations?

－First self-driving particle detector we know of – it must be trusted

－Uncertainty quantification (UQ)

－Uncertainty quantification (UQ)

－Uncertainty quantification (UQ)

－…
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Uncertainty
by craiyon.com



Q3: Does the system generalize for differing conditions? An experiment

• Charged Pion Polarizability (CPP)

－Used RoboCDC at the start of each run in the 
experiment (summer 2022)

• At the start of each run:

－ the HV setting was predicted, and CDC HV controlled.

－Used Recommended HV

• when standard deviation <= 3% ideal GCF

－Used the closest “certain” HV in Euclidean distance on 

the uncertainty mesh

• when standard deviation > 3% of GCF
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Q3: Does the system generalize for differing conditions? An experiment

• Charged Pion Polarizability (CPP) 

－Used RoboCDC at the start of each run in the experiment
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Q3: Does the system generalize for differing conditions? CPP
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Q3: Does the system generalize for differing conditions? CPP
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Q3: Does the system generalize for differing conditions? CPP
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Q3: Does the system generalize for differing conditions? CPP
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Q3: Does the system generalize for differing conditions? CPP
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Q3: Does the system generalize for differing conditions? An experiment

• Charged Pion Polarizability (CPP) 

－Used RoboCDC at the start of each run in the experiment
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Thank you
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Backup slides
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CDC Calibrations

• Gain affects PID selections in analysis

－Sensitive to environmental conditions
• Atmospheric pressure

• Temperature

－Sensitive to experimental conditions
• Beam conditions change with the 

experiment
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deuteron
proton
K+

pi+

•Traditionally:

•GCF obtained from Landau fit to dE/dx

•Calibration constants are generated per run

•Approximately 2 hours of beam time



Q1: Can we predict GCFs? The Gaussian process model
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ML Technique

Gaussian Process (GP)
● 3 features: 

● atmospheric pressure within the hall

● Gas temperature within CDC

● CDC high voltage board current -> a measure of charged 

particle track rate within the CDC

● 601 runs from 2020 and 2021 run periods
● 536 and 65 respectively
● Pressure balanced for low, medium and high pressure

● 80 / 20 train test split

● 1 target: the traditional Gain Correction Factor (GCF)

● GP calculates PDF over admissible functions that fit the data

● GP provides the standard deviation
● we can exploit for uncertainty quantification (UQ)

● We used a popular GP kernel: 
● Radial Basis Function + White

● Compared isotropic (1 length scale) and anisotropic (length scale 

per input variable) kernels

Illustration training a Gaussian process

We can exploit the standard deviation 
for uncertainty quantification (UQ).

RBF kernel
(length scale(s))

𝑹𝟐 RMSE Mean 
|% err|

Isotropic
(1.412)

0.97 0.002 0.8%

Anisotropic
(1.4,1.17,.171)

0.97 0.002 0.8%

Our goal was better than a 5% error



Q3: Does the system generalize for differing conditions? Evaluating Uncertainty

Do we trust our uncertainties?
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• Predicted proportion of the test data expected 
to lie inside the prediction interval (x-axis) 

• Proportion of the test data observed inside the 
prediction interval (y-axis) 

• We are marginally underconfident with a 4% 
global miscalibration area.

For example, the 0.75 prediction interval aims to include 
observed values  75% of the time.

• We checked our “uncertainty calibration” using Uncertainty Toolbox 

https://github.com/uncertainty-toolbox/uncertainty-toolbox

Youngseog Chung, Ian Char, Han Guo, Jeff Schneider, and Willie Neiswanger. Uncertainty toolbox: an open-source library for assessing, visualizing, and improving uncertainty 

quantification. arXiv preprint arXiv:2109.10254, 2021.

https://github.com/uncertainty-toolbox/uncertainty-toolbox


Q3: Does the system generalize for differing conditions? Evaluating Uncertainty

Do we trust our uncertainties?
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• We checked our “uncertainty calibration” using Uncertainty Toolbox 

https://github.com/uncertainty-toolbox/uncertainty-toolbox

https://github.com/uncertainty-toolbox/uncertainty-toolbox


Q3: Does the system generalize for differing conditions? Uncertainty quantification

• The Gaussian process provides 
uncertainty quantification.

－Important not to set the HV when uncertain, 
but how do we use uncertainty?

• First, we thought of an uncertainty 
threshold "surface".
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Plots of a grid mesh of the input feature space for 
predictions with Gaussian process standard deviation 
<= 3% of the ideal GCF:

• As expected, the "surface" increases for low 
current runs, when more low current runs were 
added to training data.



Q3: Does the system generalize for differing conditions? CPP
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Q3: Does the system generalize for differing conditions? PrimeX
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Q3: Does the system generalize for differing conditions? CPP
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How Can We Use Uncertainty Quantification? 
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Can we use uncertainty to 
guide new data acquisition?

Temp vs. Current vs. Pressure for 
different uncertainties



Calibrations with AI: Gain 
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• AI generated calibration constants agree with conventional gain calibration results

• GCF are more stable compared to GlueX 2020 run period



Summary and Outlook

Diana McSpadden, Torri Jeske, Nikhil Kalra, 
Naomi Jarvis, Thomas Britton, and David 
Lawrence

roark@jlab.org

• Ability to predict existing calibration 
constants using GPR models using 
environmental and detector specific data

• Compared calibrations with conventional 
and AI-generated starting values

• System is implemented and has been used 
for 3 experiment run periods.

• Application to additional drift chambers in 
progress
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Current TToD Model: Gaussian Process Regression 

• Same input features as GPR for gain

• Targets: Existing TToD calibration constants from GlueX 2020 run period

• Evaluation metric:
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Illustration only

Mean Pressure (kPa)



TToD Fit function
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