

- experimental test point for low-energy QCD. Measuring polarizability is as fundamental a test as measuring magnetic moments.

- e/π : separation achievable using calorimeter features, already available at GlueX.
- μ/π : 6 multi-wire proportional ch--ambers (MWPCs) were built and installed to use as input features for μ/π neural net.
- Lead absorbers are placed between the MWPCs. Muons pass out the back, pions interact with lead

AI/ML for PID in the Charged Pion Polarizability Experiment at JLAB Andrew Schick¹, David Lawrence², Nikhil Kalra² UMass Amherst¹, Jefferson Lab²

Classification report

	classification_ report			
	precision	recall	f1-score	support
0.0	0.96 0.93	0.93 0.96	0.94 0.94	2055 1939
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	3994 3994 3994

•Step 1: Find the mean of x, and the mean of y

(call them "b")

•Step 3: Calculate: ab, a² and b² for every value •Step 4: Sum up ab, sum up a² and sum up b²

 $[(sum of a^2) \times (sum of b^2)]$

- on GlueX data
- $MLP_{1,2} < 0.2,$ $MLP_{1.2} > 0.8$

Real Time Data Monitoring in CPP

- Both the muons and pions ⁶⁰⁰⁰ applied: MLP < 0.2MLP > 0.8

- Steps to calculate correlation
- •Step 2: Subtract the mean of x from every x value (call them "**a**"), and subtract the mean of y from every y value
- •Step 5: Divide the sum of ab by the square root of

1.2 1 M_{ete} Kin (GeV/c²

• Individual tracks can be viewed in real time monitoring plots, with the momentum and projection to the face of each wire plane.