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Motivation

<+ JUNO Physics and Detector

e The JUNO experiment is designed to measure the neutrino
mass order (NMO) using a 20 kton liquid scintillator detector

e The measurement of atmospheric neutrino oscillation has
great potential to boost JUNO's NMO sensitivity

< Precise reconstruction algorithms are critical, and
challenging due to complicated interactions

e Particle incident angle (to calculate the oscillation baseline) Sosmic m /
(Isotropic)

e Neutrino flavor (PID) N

e Neutrino energy

<+ A noval, multi-purposed reconstruction method based |
on machine learning is introduced in this talk /



Methodology

<+ In the LS detector, the light received by a PMT is the superposition

of the scintillation light from many points along the track. ] '
+ How the amount of light received by a PMT evolves as a function =~ =i i
of time (waveform) depends upon I
e Its angle wrt to the track direction; B el gy
e Distance from the track and its start/stop points; // o
e Visible energy and dE/dx (particle ID). . ‘
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Methodology

<+ Due to the large number of PMTs (~18000 20" and ~25000 3") distributed
on the sphere, directly feeding models with all waveforms is hard

+ A few characteristic features that reflect event topology in the detector are
extracted from the waveforms to reduce the data volume
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Feature Engineering

« Selected characteristic information (feature) from waveforms

ADC

:::: - e First hit time: distance between track and PMT, and
‘”";‘ Elecsim angle information

1:2: angle between track and PMT

GOOE— e Peak time: track length

- | e Total nPE: Energy deposition topology

NSIDE: 16. Theta: 1.75, Phi: 0.033630
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Spherical GNN Model: Deepsphere

» Graph construction: adjacency matrix defined as

|loe;—%5115 s ; ; : _ .
w.. — %P (— = pf“’ ) if pixels i and j are neighbors, x; as the 3d coordinates, p as the averaged more details
2 1y otherwise, distance over all connected pixels in backup

» Convolution: based on spherical harmonic transform

P ; q; as the coefficient to be learnt; P as the polynomial
h(L)f = Z o L' | f, order; L as the graph Laplacian; f as the graph signal
i=0

> Pooling: the data supported on the sub-pixels is summarized by max(), min() or avg()

FHT

Graphs are formed directly on the
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(e Idax pooling
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Rotation covariance is maintained to
make the model easier to converge

Flexible prediction block for:
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Planar CNN/Transformer Model

» PMTs are seen as pixels, with each feature projected from the sphere to the
planar surface
» A few CNN/Transformer models are applied and cross-validated
» EfficientNetV2-S: state-of-art performance among CNNs
» CoAtNet: CNN + Transformer hybrid network
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Direction Reconstruction

+ MC sample: ~135k total »/%¢¢ events. ~95k training events, 40k testing
events (Honda flux)

e Similar results are obtained from GNN/CNN models

e Zenith angular resolution gets better as the neutrino energy increases as

expected
preliminary results
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Eliminate Bias of Directionality Regression

The definition of 8/¢ naturally
causes uneven angular distribution

The ML models struggle to provide
a unbiased prediction, in particular
at north/south pole

Predicted 6 (°)

10° 20 © 8 80 100 120 140 160
True 0 (°) TREEL)
7 4
<+ Work-around is to predict (x,y,z) of the direction T )
vector, then convert to zenith angle 6. 2| ONgedicted y.2)
+ The loss function is defined as the distance between v4
the true and predicted vector endpoint W= :

e Rotation invariance can be remained

e Get minimum bias, and slightly better performance



Energy Reconstruction

< Energy reconstruction based on the Deepsphere model
e Results with ~135k v,/7,CC events
e Trained with data collected in the first trigger readout window
e Three features (nNPE, FHT and slope) are used to reconstruct the visible energy

preliminary results
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Event |dentification

+ Use deepsphere to identify event types: v, CC, v, CC and NC neutrino

NC

v,lv,CC -

Predicted

uﬂ/EHCC .

preliminary results

NC

v,/lv,CC
Fact

Vy/EyCC

25000

20000 ¢ Overall v/7,cC efficiency: 82%; purity: 85%

* Overall w/z.cc efficiency: 91%; purity 67%

15000
 Default score cut is used here:

[ =5 Score cuts can be further optimized for

- 5000 efficiency/purity tradeoff
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v, efficiency / purity
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At higher energy, it is more likely for background NC events to create energetic 1rt/117 /110

which mimics p/e in v,/v, CC events
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Interaction Vertex Reconstruction

15 F
’g 10
x
x 5
[} .
5
> 0
©
9 5
0 -5 .
-
g
a —-10-
s Vertex (X)
_2920 -15 -10 -5 0 5 10 15
True Vertex x(m)
mean: 0.21cm
0030,  B% sigma: 12.31cm

-40

mean: 0.32cm
rms: 14.11cm

-20 0 20 40

True Vertex x - Reconstructed Vertex x(cm)

102

10!

10°

H R
o (6]

(8]

Predicted Vertex y(m)
I
au o

|
=]
s

-15-

preliminary results

— y=x

#  Vertex(Y)

-10 -5 0 5 10 15
True Vertex y(m)

-15

0.035

mean: 0.77cm
sigma: 11.50cm

mean: 0.75cm
rms: 13.54cm

-40 -20 0 20 40

True Vertex y - Reconstructed Vertex y(cm)

[
wu

102

10!

Predicted Vertex z(m)
(-}

|
[
e

-15

=
2

e

|
(0]

—_— y=X

Vertex (£)

-15

-10 -5 O 5 10 15

True Vertex z(m)

0.035

-40

mean: -0.38cm
sigma: 11.48cm

mean: -0.31cm
rms: 13.34cm

-20 0 20 40

True Vertex z - Reconstructed Vertex z(cm)

102

10!

10°



Summary

< In this talk, a general reconstruction approach for LS detector is introduced

< Multiple machine learning models (Spherical GNN/CNN/Transformer) are
developed to cross validate the method

<+ By using MC sample produced by JUNQO, multiple properties (directionality/
energy/ PID) of atmospheric neutrinos are reconstructed precisely

< For non-trivial reconstruction tasks (neutrino directionality), the performance is
unprecedent

< As the next step, the method could be further improved and validated

e Remove model dependent factor

e Automatic extration of features
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Graph-CNN for Spherical Data

Deepsphere

Equally divide the sphere into 12 parts
Further divide each part into N4 parts

Total number of pixels is 12X2n

Use healpix sampling to define vertices
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Evolution of Light Received by PMTs

+ Time for scintillation light from points on a track to reach a PMT
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+ The reconstruction performance should be unbiased for all theta values

Benchmarking Reconstruction Bias

<+ Benchmark the reconstruction bias by Checking the ¢' angle of predicted
vector wrt z around the true vector

+ Flat ¢' distribution over all theta around 90 degree with small fluctuation

means the bias is minimum
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