

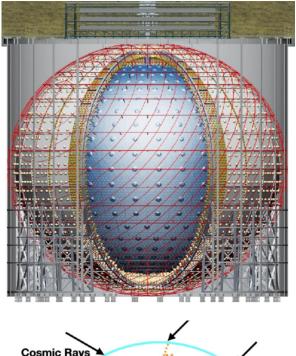
A Multi-purposed Reconstruction Method Based on Machine Learning for Atmospheric Neutrino at JUNO

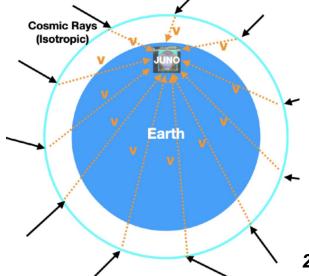
Hongyue Duyang^[1], <u>Teng Li</u>^[1], Xiaohan Tan^[1], Zekun Yang^[1], Fanrui Zeng^[1] Jiaxi Liu^[2], Zhen Liu^[2] ^[1]Shandong University ^[2]Institute of High Energy Physics, CAS 2022.10 ACAT 2022

Motivation

JUNO Physics and Detector

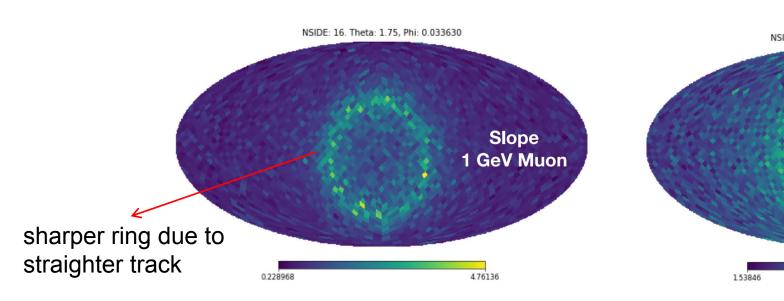
- The JUNO experiment is designed to measure the **neutrino mass order (NMO)** using a 20 kton liquid scintillator detector
- The measurement of **atmospheric neutrino oscillation** has great potential to boost JUNO's NMO sensitivity
- Precise reconstruction algorithms are critical, and challenging due to complicated interactions
 - Particle incident angle (to calculate the oscillation baseline)
 - Neutrino flavor (PID)
 - Neutrino energy
- A noval, multi-purposed reconstruction method based on machine learning is introduced in this talk

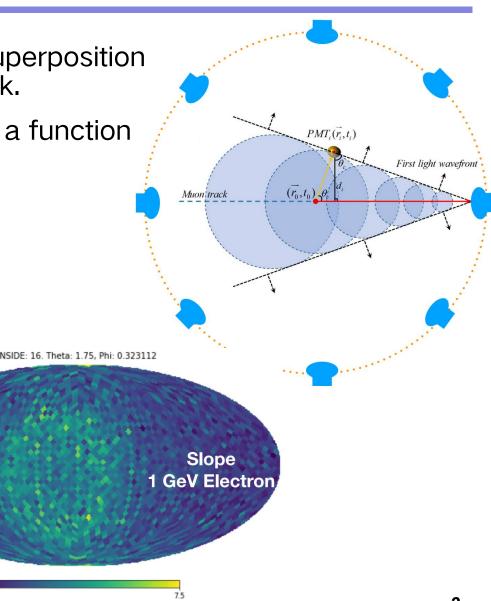




Methodology

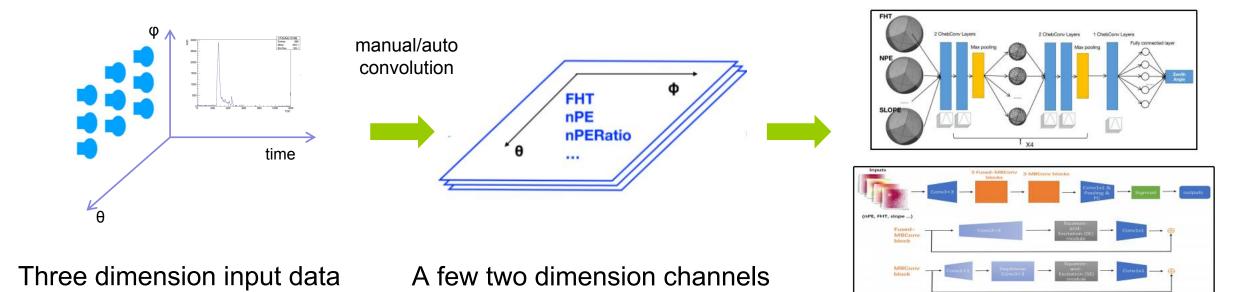
- In the LS detector, the light received by a PMT is the superposition of the scintillation light from many points along the track.
- How the amount of light received by a PMT evolves as a function of time (waveform) depends upon
 - Its angle wrt to the track direction;
 - Distance from the track and its **start/stop points**;
 - Visible energy and dE/dx (particle ID).





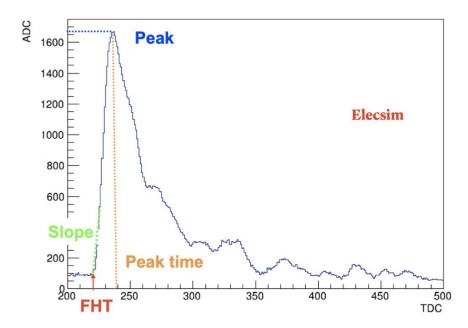
Methodology

- Due to the large number of PMTs (~18000 20" and ~25000 3") distributed on the sphere, directly feeding models with all waveforms is hard
- A few characteristic features that reflect event topology in the detector are extracted from the waveforms to reduce the data volume



Feature Engineering

Selected characteristic information (feature) from waveforms



- First hit time: distance between track and PMT, and angle information
- Slope: angle between track and PMT
- Peak time: track length
- Total nPE: Energy deposition topology



. . .

Spherical GNN Model: Deepsphere

Graph construction: adjacency matrix defined as

 $W_{ij} = \begin{cases} \exp\left(-\frac{\|\mathbf{x}_i - \mathbf{x}_j\|_2^2}{\rho^2}\right) & \text{if pixels } i \text{ and } j \text{ are neighbors,} \\ 0 & \text{otherwise,} \end{cases}$

 \mathbf{x}_i as the 3d coordinates, ρ as the averaged distance over all connected pixels

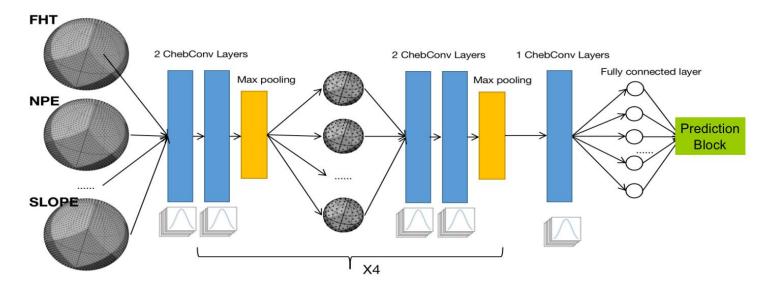
more details in backup

Convolution: based on spherical harmonic transform

 $h(\boldsymbol{L})\boldsymbol{f} = \left(\sum_{i=0}^{P} lpha_i \boldsymbol{L}^i
ight) \boldsymbol{f},$

 α_i as the coefficient to be learnt; P as the polynomial order; L as the graph Laplacian; f as the graph signal

> Pooling: the data supported on the sub-pixels is summarized by **max()**, min() or avg()



Graphs are formed directly on the spherical detector

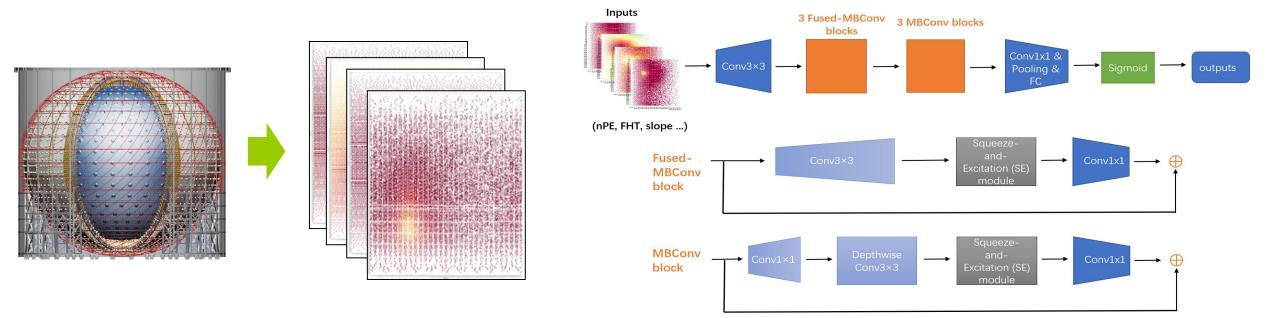
Rotation covariance is maintained to make the model easier to converge

Flexible prediction block for:

- Angle
- PID
- Energy

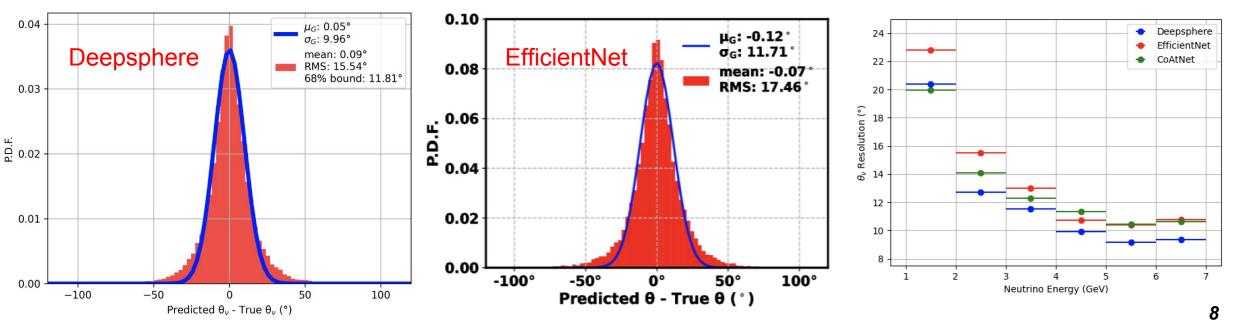
Planar CNN/Transformer Model

- PMTs are seen as pixels, with each feature projected from the sphere to the planar surface
- A few CNN/Transformer models are applied and cross-validated
 EfficientNetV2-S: state-of-art performance among CNNs
 - CoAtNet: CNN + Transformer hybrid network



Direction Reconstruction

- ♦ MC sample: ~135k total $\nu_{\mu}/\bar{\nu}_{\mu}CC$ events. ~95k training events, 40k testing events (Honda flux)
 - Similar results are obtained from GNN/CNN models
 - Zenith angular resolution gets better as the neutrino energy increases as expected

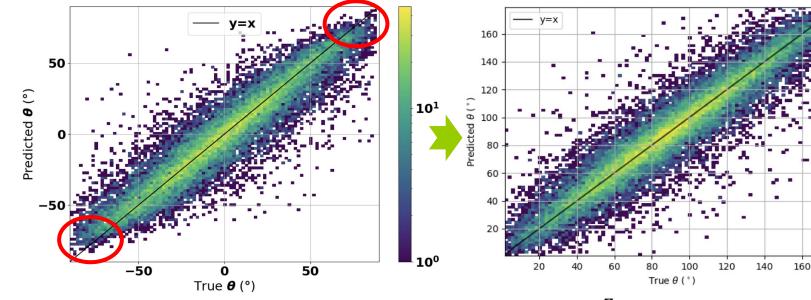


preliminary results

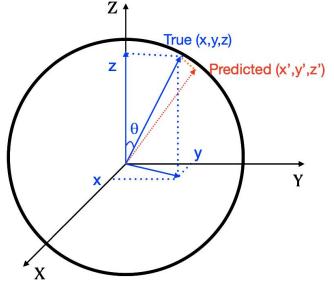
Eliminate Bias of Directionality Regression

The definition of θ/ϕ naturally causes uneven angular distribution

The ML models struggle to provide a unbiased prediction, in particular at north/south pole

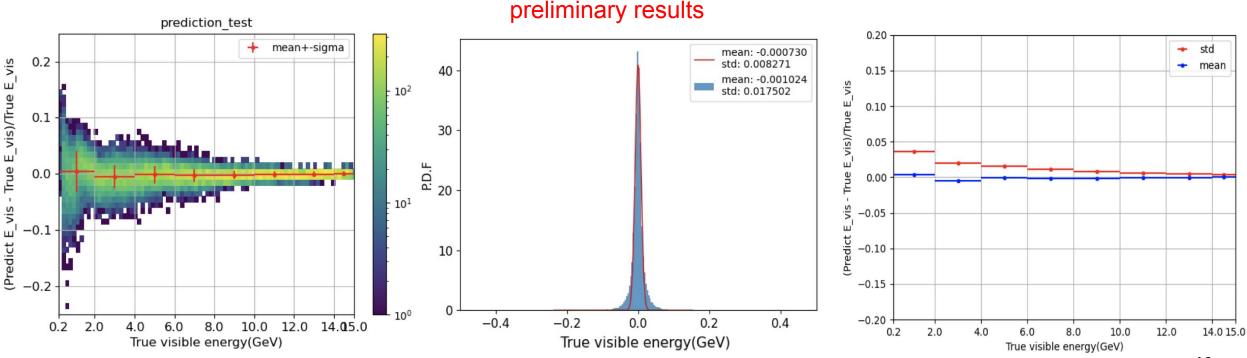


- Work-around is to predict (x,y,z) of the direction vector, then convert to zenith angle θ.
- The loss function is defined as the distance between the true and predicted vector endpoint
 - Rotation invariance can be remained
 - Get minimum bias, and slightly better performance



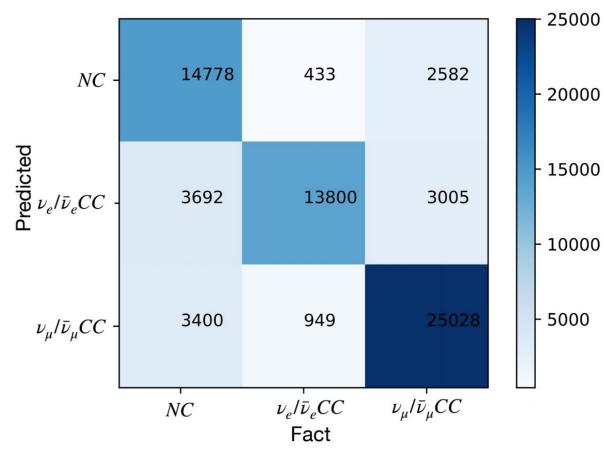
Energy Reconstruction

- Energy reconstruction based on the Deepsphere model
 - Results with ~135k $\nu_{\mu}/\bar{\nu}_{\mu}CC$ events
 - Trained with data collected in the first trigger readout window
 - Three features (nPE, FHT and slope) are used to reconstruct the visible energy



Event Identification

• Use deepsphere to identify event types: v_{μ} CC, v_{e} CC and NC neutrino

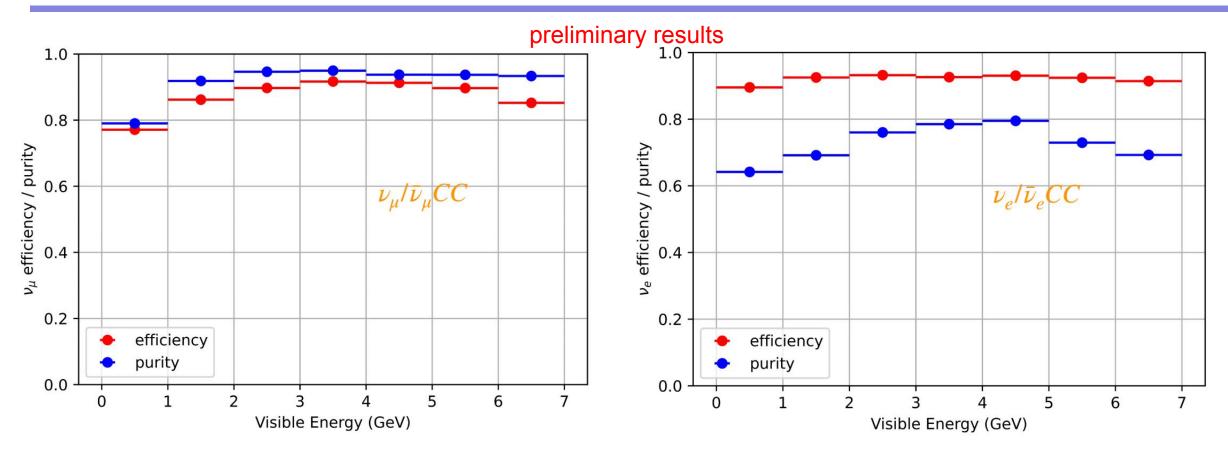


preliminary results

- Overall $\nu_{\mu}/\bar{\nu}_{\mu}CC$ efficiency: 82%; purity: 85%
 - Overall $\nu_e / \bar{\nu}_e CC$ efficiency: 91%; purity 67%
 - Default score cut is used here:
 - Score cuts can be further optimized for

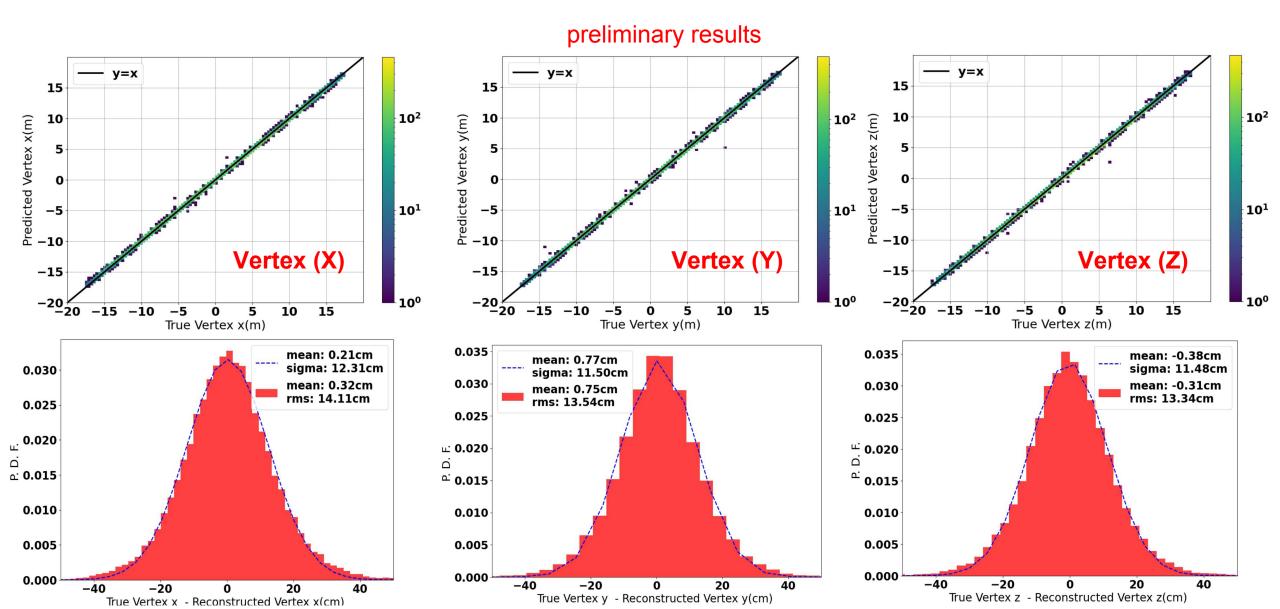
efficiency/purity tradeoff

Event Identification



- Efficiency/purity increases and then decrease as functions of visible energy
- ✤ At lower energy, it is harder to distinguish electron from muon given short track length
- At higher energy, it is more likely for background NC events to create energetic π⁺/π⁻/π⁰ which mimics µ/e in v_µ/v_e CC events

Interaction Vertex Reconstruction



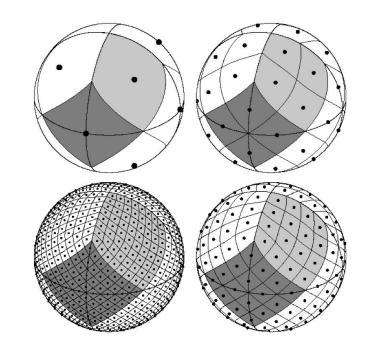
Summary

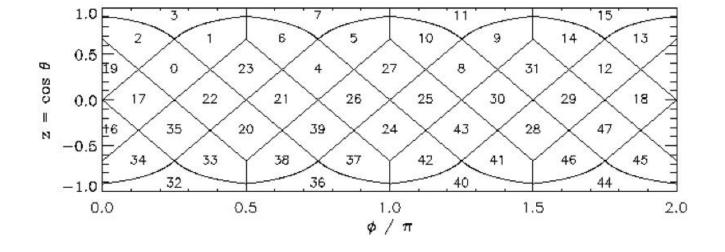
- In this talk, a general reconstruction approach for LS detector is introduced
- Multiple machine learning models (Spherical GNN/CNN/Transformer) are developed to cross validate the method
- By using MC sample produced by JUNO, multiple properties (directionality/ energy/ PID) of atmospheric neutrinos are reconstructed precisely
- For non-trivial reconstruction tasks (neutrino directionality), the performance is unprecedent
- As the next step, the method could be further improved and validated
 - Remove model dependent factor
 - Automatic extration of features

Backup

Deepsphere: Graph-CNN for Spherical Data

- Use healpix sampling to define vertices
 - Equally divide the sphere into 12 parts
 - Further divide each part into N_{side} parts ($N_{side}=2^n$).
 - Total number of pixels is 12X2ⁿ
 - If more than one PMTs are in one pixel, info is merged





Evolution of Light Received by PMTs

Time for scintillation light from points on a track to reach a PMT

$$t_{0} = \frac{d}{c/n} \qquad t_{1} = \frac{\Delta l}{v} + \frac{d - \Delta l \cos\theta}{c/n}, (\Delta l < < d)$$
$$\Delta t = |t_{1} - t_{0}| = \Delta l |(\frac{1}{v} - \frac{\cos\theta}{c/n})|$$

$$\frac{dl}{dt} = \frac{1}{\left|\frac{1}{v} - \frac{\cos\theta}{c/n}\right|} = \frac{v}{\left|1 - n\beta\cos\theta\right|}$$

(Length of the track visible to a PMT as a function of time)

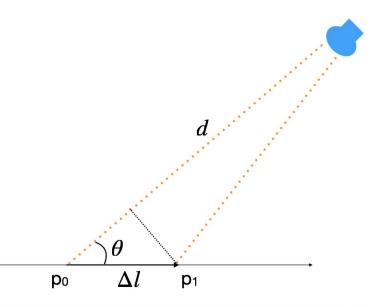
 $\frac{dl}{dt}$ is a function of $\underline{\theta}$, also depends on where the track starts and stops.

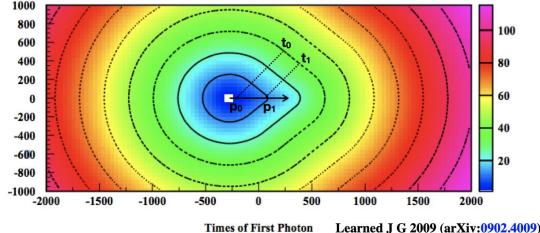
The amount of light emitted depends on l and particle type (<u>dE/dx</u>).

The amount of light received by a PMT evolves as a function of time according to the event topology in the detector.

Maximum light rising slope at
$$cos\theta = \frac{1}{n\beta}$$
 if $\beta > 1/n$

(the same angle as CKV)





Benchmarking Reconstruction Bias

- The reconstruction performance should be unbiased for all theta values
- Benchmark the reconstruction bias by Checking the φ' angle of predicted vector wrt z around the true vector
- Flat φ' distribution over all theta around 90 degree with small fluctuation means the bias is minimum

