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Introduction 2 Fermilab

* In many LHC searches, we often look for particle resonances

- These resonances are often manifested as local features in mass distributions

- One essential procedure we do to find signal / deviation from bkg
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* =
Introduction 2 Fermilab

* In many LHC searches, we often look for particle resonances

- These resonances are often manifested as local features in mass distributions

- One essential procedure we do to find signal / deviation from bkg

Fitting and finding ‘bumps’

But we don’t know this
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Finding signal bumps 3¢ Fermilab

- There is one essential procedure we do to find localized signal / deviation

from bkg

* Procedure to Fit:
-+ Option |:Use data driven methods + Signal template

* Hard to find a method that works and very specific to the analysis

+ Option 2: Fit a smooth function + Gaussian to the data

- How are we choosing this smooth function? it's Ad-hoc !
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But what function to choose ?

2= Fermilab

* In the history of search for RPV gluinos, The fit function changed with every search !
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Finding signal bumps 3¢ Fermilab

- There is one essential procedure we do to find localized signal / deviation

from bkg

* Procedure to Fit:
-+ Option |:Use data driven methods + Signal template

* Hard to find a method that works and very specific to the analysis

» Option 2: Fit a smooth function + Gaussian to the data !

- How are we choosing this smooth function? it's Ad-hoc !

Anything better on the menu ?
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Finding signal bumps 3¢ Fermilab

- There is one essential procedure we do to find localized signal / deviation

from bkg

* Procedure to Fit:
-+ Option |:Use data driven methods + Signal template

* Hard to find a method that works and very specific to the analysis

» Option 2: Fit a smooth function + Gaussian to the data !

- How are we choosing this smooth function? it's Ad-hoc !

- New Option : Bkg estimation method that works with only few assumptions,
Can we use ML techniques to infer it directly from data !
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Finding signal bumps 3¢ Fermilab

- There is one essential procedure we do to find localized signal / deviation

from bkg

* Procedure to Fit:
-+ Option |:Use data driven methods + Signal template

* Hard to find a method that works and very specific to the analysis

» Option 2: Fit a smooth function + Gaussian to the data !

- How are we choosing this smooth function? it's Ad-hoc !

* New Op . . ly few assumptions,
Canwe: @Gaussian Prossess Regression !

e — SeccsetmmmesttnpdT
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* -
Gaussian Process Regression ar Fermilab

“A Gaussian process is a probability distribution over
possible functions that fit a set of points”

. We are modeling Data = Bkg(x) + Sig(x) + ¢ <= Error coming from

experiment
7N

Smooth function Local feature
(‘long ranged’) (‘short ranged’)

We don’t have We have Exact
exact info about it info from MC

- Like a gaussian, GP is defined by mean and covariance fn ~ &%(m(x),K(x, x"))
- The K(x, x’) defines the correlation b/n data points, models smooth background
- Error in our observations ¢ is added to the diagonal of K(x, x')

- The m(x) is used to add additional interpretability: extracting signal parameters
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* -
Gaussian Process Regression ar Fermilab

Data , , \/—\
€ P(m(x),K(x, x)) TR T

l\APriors X  Likelihood — Posterior
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Why GP ?

- Very well understood kernel based ML technique and used in various fields

2= Fermilab

+ Use of GP for HEP background modeling is first illustrated in arxiv:1709.0568

- Tests were performed on toys based on LHC dijet distribution

* It leads to a constant performance with increasing statistics
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https://arxiv.org/pdf/1709.05681.pdf

Why GP ? # Fermilab

- But what’s the catch ?

. Choice for m(x) ~ Gaussian / etc ..., But how do we pick K(x, x") ?

How do we best extract the parameters of signal ~ m1(x) ?

- A simple prescription for extracting limits and tests on real data

+ Can we add a bit of poisson statistics flavor to it ?
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https://arxiv.org/pdf/1709.05681.pdf

* -
Gaussian Process Regression ar Fermilab

*  We are modeling Data = Bkg(x) + Sig(x) + €
Lets take di-photon data from ATLAS @ LHC, Sig(x) we are keen in finding out is H — yy
- We are more interested in figuring out the shape of Blkg(x),

Mask expected signal region in data, so Data ~ Bkg(x)
~ masking out =20 from expected signal mean

No expected signal here so m1(x) ~ O

(x — x')?

o >optimize

Hyper-Parameters (0) : A, by minimizing likelihood

For a covariance, say K(x, x") = A%exp <—

1 : NS 2 n
10gp(y|X)=—5y (K +diag(c?)) y—510g|K+ o.1| —510g27r

Goodness of fit

Use this to get predicted Bkg(x) distribution

* We can repeat it for different K(x, x’), How do we pick the best one out ?
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* ™
GP : Model selection 3¢ Fermilab

*  We applied various kernels for modeling Bkg(x) in masked di-photon data

kPon2(x’x/)’ kRBF(*, X') and KMatern(X, X')

. . ) ATLAS 13 TeV open data
- Using optimized 6, calculate metrics to compare kernels T ]
- g — REF
\ Matern

5000} \
I — Poly2
- Some of the main ingredients to calculate comparison metrics . Funcs ]
ata

40001

- Poison Likelihood:  logL,, = Z y; — f(x;,) — y;log (f(y )> g
i=1 1 3000}

+ Effective d.of: d,(0) = t[KO)K©O) + 6*1)7] .

- Calculate information criteria: AlICp| = —2log Ly + deff ool

400 H——

We compare results w/ traditional functions: 4th order polynomials 200f-

E

}IE 0

8 |
Model log|H| n d -log(PL) -log(GL) BIC&"® BICqL BICRaive 2001 | ]
Poly2 -0531 1 299  38.02 87.52 89.22 87.25 39.72 oo b ]
RBF 0417 2 468 895 72.15 75.55  72.36 12.35 10 120 13?nW[Ge\)]“° 10 %0
Matern 2.906 2 567  8.69 72.30 75.70  73.75 12.09
Func4 - 5) 5) 8.65 — — — 17.15
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Signal extraction

2= Fermilab

With the Bkg(x) figured out, now let’s hunt for the signals using m1(x)

Best suited kernel : kgpg(x, x)
Signal we are looking for is Higgs (H — yy)

A (Xi _M)z
exp | —

For signal we take m(x,) =

[\
Q

[\
Events

2no

We take the optimized 6, fit for signal parameters

using poison likelihood

Using the GP fits we find signal parameters to be

ARBFH“RBF’ ORBF = {473 £ 123, 124.7 £ 0.6, 2.4 = 0.4}
Using the traditional functional fits we get

AFuncas KEuncds OFunca = {443 +199, 124.5+0.8, 2.3 + 0.9}
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s i
Estimating signal significance  Fermilab
For significance we need the posterior distributions of signal parameters
Estimated by carrying out Markov Chain Monte Carlo (MCMC) of Poison likelihood

- With systematic uncertainties as priors on signal parameters

* We integrate the amplitude posterior distribution (A) to get 95% CL value

BKG only toy dataset Observed data
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L, 3 =
Estimating signal significance a Fermilab

* We generate 5000 toy datasets by
conditionally sampling from GP posterior

- Ran MCMC analysis on these toys T T T T T
1000 ! ! ! Median —
. . I + 1 Sigma |
- Signal amplitude @ 95% CL from these _ +2Sigma |
toys gives us sensitivity estimates 800 =
o _
3 !
+ The same from observed data gives us the B 600 i
significance of the signal e |
£
C 400 s
>
-+ Results: 2
: 200 i
- Observed signal strength: 485 + |21 —
T ~ : 0_ —_
- Significance: 3.156 or 99.84 percentile 200 400 600 800

Upper limit of signal strength at 95% CL
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Summary 3¢ Fermilab

* Non-parametric methods like GP can automate the background estimation
+ GP proves handy when fitting for smooth background distributions

* Very relevant and essential for modeling data collected in RUN-3 and HL-LHC
* We provide a model selection framework for choosing GP covariance functions
- A method to extract localized signal parameters with minimal bias

* Prescription to estimate the sensitivity and the signal significance

For a more detailed information refer to: arxiv:2202.05856
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https://arxiv.org/abs/2202.05856
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GP : Model selection

2= Fermilab

*  We applied various kernels for modeling Bkg(x) in masked di-photon data

kpo|),2(x, x') = (ag + x - x')?

__ S

21?

krpBg(x, x") = oyexp

5
kMatern®,x) =0y | 1 + Ta’(x, x') + gd(x, x")? [ exp

— ?d(x, x')

A 1
. —logp(y|X,K;)) ~ —logp(y|X,0,K) + ) log| H| = BIC, H is the Hessian

A n :
. —logp(y|X,K)) ~ —-logp(y|X,0,K,) + > log N = BIC"V€  n is # parameters in model

N is # data points

Model log|H| n d -log(PL) -log(GL) BIC¥“® BICq, AICp, BICEY®
Poly2 -0.531 1 299  38.02 87.52 89.22  87.25 8202  39.72
RBF 0417 2 468 895 72.15 75.55 7236  27.26  12.35
Matern 2.906 2 567  8.69 72.30 75.70  73.75  28.72  12.09
Func4 - 5 5 8.65 - - - 27.30  17.15

Arxiv : In preparation Abhijith Gandrakota
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GP in a Nut shell > Fermilab

At each bin X; we have a bin content of Y¥; € /' (u, 0)
We can describe the correlation between the Y values using a matrixs ()

* In this 2 bin example both bins are very correlated. >

The correlation structure of Y| and Y, is Y,
visualized as a 2D gaussian ~

All the randomly sampled points from this 2D ¥ [ 1.9 ] -1
. . 9 1
gaussian show us the possible values of Y,

- By taking the weighted average, we can get mean and variance variable index
GP is defined by a Mean function [m(x)] and a kernel matrix [K]

* In our case we have a higher bin count, we define this covariance matrix using a kernel

+ We factor in the noise (as each observation inherent error) by taking 2(x;, x;) = k(x;, x;) + Iay2

* We do know the error on the each bin content, which is used in turn.

- Using this Kernel, we can extrapolate prediction to any values of x

https://thegradient.pub/gaussian-process-not-quite-for-dummies/, Abh ij ith Gandrakota 29
http://www.gaussianprocess.org/gpml/
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