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Introduction
• In many LHC searches, we often look for particle resonances

• These resonances are often manifested as local features in mass distributions

• One essential procedure we do to find signal / deviation from bkg 
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Fitting and finding ‘bumps’
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Fitting and finding ‘bumps’

But we don’t know this 
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Finding signal bumps
• There is one essential procedure we do to find localized signal / deviation 

from bkg 

• Procedure to Fit:

• Option 1: Use data driven methods + Signal template

• Hard to find a method that works and very specific to the analysis 
 

• Option 2: Fit a smooth function + Gaussian to the data 

• How are we choosing this smooth function? it’s Ad-hoc ! 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But what function to choose ?
• In the history of search for RPV gluinos, The fit function changed with every search !
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CDF: Landau (x) gaussian
CMS 7 TeV - Exponential

CMS 8 TeV CMS 13 TeV
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Anything better on the menu ?
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• New Option : Bkg estimation method that works with only few assumptions, 
Can we use ML techniques to infer it directly from data ?
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Gaussian Prossess Regression ! 
 



Abhijith Gandrakota

Gaussian Process Regression

• We are modeling Data = Bkg(x) + Sig(x) +  

• Like a gaussian, GP is defined by mean and covariance fn ~ , )


• The  defines the correlation b/n data points, models smooth background


• Error in our observations  is added to the diagonal of 


• The  is used to add additional interpretability: extracting signal parameters 

ϵ

𝒢𝒫(m(x) K(x, x′￼)

K(x, x′￼)

ϵ K(x, x′￼)

m(x)
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“A Gaussian process is a probability distribution over 
possible functions that fit a set of points”

Smooth function 
(‘long ranged’)

Local feature  
(‘short ranged’)

Error coming from 
experiment

We don’t have 
exact info about it

We have Exact  
info from MC
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“A Gaussian process is a probability distribution over 
possible functions that fit a set of points”

Smooth function 
(‘long ranged’)

Local feature  
(‘short ranged’)

Error coming from 
experiment

We don’t have 
exact info about it

We have Exact  
info from MC

Priors   X      Likelihood        Posterior →
, )𝒢𝒫(m(x) K(x, x′￼)

Data



Abhijith Gandrakota

Why GP ? 
• Very well understood kernel based ML technique and used in various fields

• Use of GP for HEP background modeling is first illustrated in arxiv:1709.05681

• Tests were performed on toys based on LHC dijet distribution

• It leads to a constant performance with increasing statistics 

12[1]: Arxiv: 1709.05681

https://arxiv.org/pdf/1709.05681.pdf
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Why GP ? 
• Very well understood kernel based ML technique and used in various fields

• Use of GP for HEP background modeling is first illustrated in illustrated arxiv:1709.05681

• Tests were performed on toys based on LHC dijet distribution

• It leads to a constant performance with increasing statistics 

• But what’s the catch ?


• Choice for  ~ Gaussian / etc . . . , But how do we pick  ?

•  How do we best extract the parameters of signal ~  ?

• A simple prescription for extracting limits and tests on real data

• Can we add a bit of poisson statistics flavor to it ?

m(x) K(x, x′￼)

m(x)
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Gaussian Process Regression
• We are modeling Data = Bkg(x) + Sig(x) + 

• Lets take di-photon data from ATLAS @ LHC, Sig(x) we are keen in finding out is 

• We are more interested in figuring out the shape of Bkg(x), 

• Mask expected signal region in data, so Data  Bkg(x)  
~ masking out  from expected signal mean

• No expected signal here so  ~ 0

• For a covariance, say optimize  

Hyper-Parameters   by minimizing likelihood 
 

• Use this to get predicted Bkg(x) distribution

• We can repeat it for different , How do we pick the best one out ?

ϵ

H → γγ

∼
±2σ

m(x)

K(x, x′￼) = A2 exp (−
(x − x′￼)2

2l2 )
(θ) : A, l

K(x, x′￼)
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log p(y |X ) = −
1
2

log |K + σ2
n I | −

n
2

log 2π−
1
2

yT(K + diag(σ2))−1y

Goodness of fit Complexity penalty 

mγγ
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GP : Model selection
• We applied various kernels for modeling Bkg(x) in masked di-photon data 

 

,    and   [definitions of kernels in backup]

• Using optimized , calculate metrics to compare kernels

• Some of the main ingredients to calculate comparison metrics

• Poison Likelihood:

• Effective d.o.f :

• Calculate information criteria:   

• We compare results w/ traditional functions: 4th order polynomials

kPoly2(x, x′￼) kRBF(x, x′￼) kMatern(x, x′￼)

θ

AICPL ≡ − 2 log L𝒫 + deff
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ATLAS 13 TeV open data

log L𝒫 =
N

∑
i=1

yi − f (xi) − yi log ( yi

f (xi) )
deff ( ̂θ) = tr[K( ̂θ)(K( ̂θ) + σ2I )−1]
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Signal extraction
• With the Bkg(x) figured out, now let’s hunt for the signals using  

   Best suited kernel : 

• Signal we are looking for is Higgs ( )

• For signal we take 

• We take the optimized ,  fit for signal parameters 
using poison likelihood

• Using the GP fits we find signal parameters to be

•

• Using the traditional functional fits we get

•  

m(x)
kRBF(x, x′￼)

H → γγ

m(xi) =
A

2πσ
exp − (xi − μ)2

2σ2

̂θ

ARBF, μRBF, σRBF = {473 ± 123, 124.7 ± 0.6, 2.4 ± 0.4}

AFunc4, μFunc4, σFunc4 = {443 ± 199, 124.5 ± 0.8, 2.3 ± 0.9}
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Estimating signal significance
• For significance we need the posterior distributions of signal parameters 

• Estimated by carrying out Markov Chain Monte Carlo (MCMC) of Poison likelihood

• With systematic uncertainties as priors on signal parameters

• We integrate the amplitude posterior distribution (A) to get 95% CL value

17

Observed dataBKG only toy dataset
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Estimating signal significance
• We generate 5000 toy datasets by 

conditionally sampling from GP posterior

• Ran MCMC analysis on these toys

• Signal amplitude @ 95% CL from these 
toys gives us sensitivity estimates

• The same from observed data gives us the 
significance of the signal

• Results:

• Observed signal strength: 485 ± 121

• Significance:  3.15  or 99.84 percentileσ̃
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Summary
• Non-parametric methods like GP can automate the background estimation 

• GP proves handy when fitting for smooth background distributions

• Very relevant and essential for modeling data collected in RUN-3 and HL-LHC 

• We provide a model selection framework for choosing GP covariance functions 

• A method to extract localized signal parameters with minimal bias 

• Prescription to estimate the sensitivity and the signal significance
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For a  more detailed information refer to: arxiv:2202.05856 
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Back-up slides
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GP : Model selection
• We applied various kernels for modeling Bkg(x) in masked di-photon data 

 

,  

   

 

 

•   H is the Hessian   

• ,  n is # parameters in model 

                                                                                            N is # data points 

kPoly2(x, x′￼) = (σ2
0 + x ⋅ x′￼)2

kRBF(x, x′￼) = σ0 exp [−
(x − x′￼)2

2l2 ]
kMatern(x, x′￼) = σ0[1 +

5
l

d(x, x′￼) +
5
3l

d(x, x′￼)2]exp[ −
5

l
d(x, x′￼)]

−log p(y |X, Ki) ≃ − log p(y |X, ̂θ, Ki) +
1
2

log |H | ≡ BIC,

−log p(y |X, Ki) ≃ − log p(y |X, ̂θ, Ki) +
n
2

log N ≡ BICnaive

21Arxiv : In preparation
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GP in a Nut shell
• At each bin  we have a bin content of  => (~ gaussian like errors)

• We can describe the correlation between the Y values using a matrix ( )

• In this 2 bin example both bins  are very correlated.

• The correlation structure of  and  is  
visualized as a 2D gaussian

• All the randomly sampled points from this 2D  
gaussian show us the possible values of 

• By taking the weighted average, we can get mean and variance

• GP is defined by a Mean function [m(x)] and a kernel matrix [K]

• In our case we have a higher bin count, we define this covariance matrix using a kernel

• We factor in the noise (as each observation inherent error) by taking 

• We do know the error on the each bin content, which is used in turn.

• Using this Kernel, we can extrapolate prediction to any values of 

Xi Yi ∈ 𝒩(μ, σ)

Σ

Y1 Y2

Yi

Σ(xi, xj) = k(xi, xj) + Iσ2
y

x

22https://thegradient.pub/gaussian-process-not-quite-for-dummies/,   
http://www.gaussianprocess.org/gpml/ 

https://thegradient.pub/gaussian-process-not-quite-for-dummies/
http://www.gaussianprocess.org/gpml/

