

Hunting for signals using Gaussian Process Regression

Abhijith Gandrakota, Alexandre V. Morozov, Amit Lath, Sindhu Murthy

ACAT 2022 Bari, Italy

Reference: arxiv:2202.05856

Introduction

- In many LHC searches, we often look for particle resonances
- These resonances are often manifested as local features in mass distributions
- One essential procedure we do to find signal / deviation from bkg

Introduction

- In many LHC searches, we often look for particle resonances
- These resonances are often manifested as local features in mass distributions
- One essential procedure we do to find signal / deviation from bkg

Fitting and finding 'bumps'

Introduction

- In many LHC searches, we often look for particle resonances
- These resonances are often manifested as local features in mass distributions
- One essential procedure we do to find signal / deviation from bkg

- There is one essential procedure we do to find localized signal / deviation from bkg
- Procedure to Fit:
 - Option I: Use data driven methods + Signal template
 - Hard to find a method that works and very specific to the analysis

- Option 2: Fit a smooth function + Gaussian to the data
 - How are we choosing this smooth function? it's Ad-hoc !

But what function to choose ?

· In the history of search for RPV gluinos, The fit function changed with every search !

Abhijith Gandrakota

- There is one essential procedure we do to find localized signal / deviation from bkg
- Procedure to Fit:
 - Option I: Use data driven methods + Signal template
 - Hard to find a method that works and very specific to the analysis

- Option 2: Fit a smooth function + Gaussian to the data !
 - How are we choosing this smooth function? it's Ad-hoc !

Anything better on the menu ?

- There is one essential procedure we do to find localized signal / deviation from bkg
- Procedure to Fit:
 - Option I: Use data driven methods + Signal template
 - Hard to find a method that works and very specific to the analysis

- Option 2: Fit a smooth function + Gaussian to the data !
 - How are we choosing this smooth function? it's Ad-hoc !

 New Option : Bkg estimation method that works with only few assumptions, Can we use ML techniques to infer it directly from data ?

- There is one essential procedure we do to find localized signal / deviation from bkg
- Procedure to Fit:
 - Option I: Use data driven methods + Signal template
 - Hard to find a method that works and very specific to the analysis

- Option 2: Fit a smooth function + Gaussian to the data !
 - How are we choosing this smooth function? it's Ad-hoc !

Gaussian Process Regression

"A Gaussian process is a probability distribution over possible functions that fit a set of points"

- Like a gaussian, GP is defined by mean and covariance fn ~ $\mathcal{GP}(m(x), K(x, x'))$
- The K(x, x') defines the correlation b/n data points, models smooth background
 - Error in our observations ϵ is added to the diagonal of K(x, x')
- The m(x) is used to add additional interpretability: extracting signal parameters

Gaussian Process Regression

Why GP ?

- 🛟 Fermilab
- Very well understood kernel based ML technique and used in various fields
- Use of GP for HEP background modeling is first illustrated in <u>arxiv:1709.05681</u>
 - Tests were performed on toys based on LHC dijet distribution
 - It leads to a constant performance with increasing statistics

Why GP ?

- Very well understood kernel based ML technique and used in various fields
- Use of GP for HEP background modeling is first illustrated in illustrated arxiv: 1709.05681
 - Tests were performed on toys based on LHC dijet distribution
 - It leads to a constant performance with increasing statistics
- But what's the catch ?
 - Choice for $m(x) \sim \text{Gaussian} / \text{etc} \dots$, But how do we pick K(x, x')?
 - How do we best extract the parameters of signal $\sim m(x)$?
 - A simple prescription for extracting limits and tests on real data
 - Can we add a bit of poisson statistics flavor to it ?

Gaussian Process Regression

‡ Fermilab

- We are modeling Data = $Bkg(x) + Sig(x) + \epsilon$
- Lets take di-photon data from ATLAS @ LHC, Sig(x) we are keen in finding out is $H \rightarrow \gamma \gamma$
- We are more interested in figuring out the shape of Bkg(x),
- Mask expected signal region in data, so Data $\sim \frac{Bkg(x)}{\sigma}$ ~ masking out $\pm 2\sigma$ from expected signal mean
 - No expected signal here so $m(x) \sim 0$

For a covariance, say $K(x, x') = A^2 \exp\left(-\frac{(x-x')^2}{2l^2}\right)$ optimize Hyper-Parameters $(\theta) : A, l$ by minimizing likelihood

$$\log p(y|X) = -\frac{1}{2}y^{T}(K + diag(\sigma^{2}))^{-1}y - \frac{1}{2}\log|K + \sigma_{n}^{2}I| - \frac{n}{2}\log 2\pi$$

Goodness of fit Complexity penalty

• Use this to get predicted Bkg(x) distribution

GP : Model selection

- We applied various kernels for modeling Bkg(x) in masked di-photon data $k_{Poly2}(x, x')$, $k_{RBF}(x, x')$ and $k_{Matern}(x, x')$ [definitions of kernels in backup]
- Using optimized θ , calculate metrics to compare kernels
- Some of the main ingredients to calculate comparison metrics
 - Poison Likelihood: $\log L_{\mathcal{P}} = \sum_{i=1}^{N} \left[y_i f(x_i) y_i \log\left(\frac{y_i}{f(x_i)}\right) \right]$
 - Effective d.o.f : $d_{eff}(\hat{\theta}) = tr[K(\hat{\theta})(K(\hat{\theta}) + \sigma^2 I)^{-1}]$
- Calculate information criteria: $AIC_{PL} \equiv -2 \log L_{\mathcal{P}} + d_{eff}$
- We compare results w/ traditional functions: 4th order polynomials

Model	$\log H $	n	d	$-\log(PL)$	$-\log(GL)$	$\mathrm{BIC}_{\mathrm{GL}}^{\mathrm{naive}}$	$\operatorname{BIC}_{\operatorname{GL}}$	$\mathrm{AIC}_{\mathrm{PL}}$	$\mathrm{BIC}_{\mathrm{PL}}^{\mathrm{naive}}$	
Poly2	-0.531	1	2.99	38.02	87.52	89.22	87.25	82.02	39.72	
RBF	0.417	2	4.68	8.95	72.15	75.55	72.36	27.26	12.35	
Matern	2.906	2	5.67	8.69	72.30	75.70	73.75	28.72	12.09	
Func4	_	5	5	8.65	_	_	-	27.30	17.15	

ATLAS 13 TeV open data RBF Matern 5000 Poly2 Func4 Data 4000 Events 3000 2000 1000 400 200 Data - Fit -200 -400 ¹³⁰ Μ_{γγ} [GeV] 110 120 140 150 160

Fermilab

Signal extraction

•

- With the Bkg(x) figured out, now let's hunt for the signals using m(x)Best suited kernel : $k_{\text{RBF}}(x, x')$
 - Signal we are looking for is Higgs $(H \rightarrow \gamma \gamma)$

For signal we take
$$m(x_i) = \frac{A}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

- We take the optimized $\hat{\theta}$, fit for signal parameters using poison likelihood
- Using the GP fits we find signal parameters to be
 - $A_{\mathsf{RBF}}, \mu_{\mathsf{RBF}}, \sigma_{\mathsf{RBF}} = \{473 \pm 123, 124.7 \pm 0.6, 2.4 \pm 0.4\}$
- Using the traditional functional fits we get
 - $A_{\text{Func4}}, \mu_{\text{Func4}}, \sigma_{\text{Func4}} = \{443 \pm 199, 124.5 \pm 0.8, 2.3 \pm 0.9\}$

Estimating signal significance

- For significance we need the posterior distributions of signal parameters
 - Estimated by carrying out Markov Chain Monte Carlo (MCMC) of Poison likelihood
 - With systematic uncertainties as priors on signal parameters
- We integrate the amplitude posterior distribution (A) to get 95% CL value

Estimating signal significance

- We generate 5000 toy datasets by conditionally sampling from GP posterior
- Ran MCMC analysis on these toys
- Signal amplitude @ 95% CL from these toys gives us sensitivity estimates
- The same from observed data gives us the significance of the signal
 - **Results:**

•

- Observed signal strength: 485 ± 121
- Significance: 3.15 $\tilde{\sigma}$ or 99.84 percentile

Summary

- Non-parametric methods like GP can automate the background estimation
 - GP proves handy when fitting for smooth background distributions
 - Very relevant and essential for modeling data collected in RUN-3 and HL-LHC
- We provide a model selection framework for choosing GP covariance functions
- A method to extract localized signal parameters with minimal bias
- Prescription to estimate the sensitivity and the signal significance

For a more detailed information refer to: <u>arxiv:2202.05856</u>

Back-up slides

GP : Model selection

•

We applied various kernels for modeling Bkg(x) in masked di-photon data

$$k_{\mathsf{Poly2}}(x, x') = (\sigma_0^2 + x \cdot x')^2,$$

$$k_{\mathsf{RBF}}(x, x') = \sigma_0 \exp\left[-\frac{(x - x')^2}{2l^2}\right]$$

$$k_{\mathsf{Matern}}(x, x') = \sigma_0 \left[1 + \frac{\sqrt{5}}{l}d(x, x') + \frac{5}{3l}d(x, x')^2\right] \exp\left[-\frac{\sqrt{5}}{l}d(x, x')\right]$$

$$-\log p(y | X, K_i) \simeq -\log p(y | X, \hat{\theta}, K_i) + \frac{1}{2}\log|H| \equiv \mathsf{BIC}, \ \mathsf{H} \ \text{is the Hessian}$$

- $\log p(y|X, K_i) \simeq -\log p(y|X, \hat{\theta}, K_i) + \frac{n}{2}\log N \equiv \text{BIC}^{\text{naive}}$, n is # parameters in model

N is # data points

Model	$\log H $	n	d	$-\log(PL)$	$-\log(GL)$	$\mathrm{BIC}_{\mathrm{GL}}^{\mathrm{naive}}$	$\operatorname{BIC}_{\operatorname{GL}}$	$\mathrm{AIC}_{\mathrm{PL}}$	$\mathrm{BIC}_{\mathrm{PL}}^{\mathrm{naive}}$
Poly2	-0.531	1	2.99	38.02	87.52	89.22	87.25	82.02	39.72
RBF	0.417	2	4.68	8.95	72.15	75.55	72.36	27.26	12.35
Matern	2.906	2	5.67	8.69	72.30	75.70	73.75	28.72	12.09
Func4	_	5	5	8.65	_	_	_	27.30	17.15

Arxiv : In preparation

GP in a Nut shell

- At each bin X_i we have a bin content of $Y_i \in \mathcal{N}(\mu, \sigma) \Longrightarrow$ (~ gaussian like errors)
- We can describe the correlation between the Y values using a matrix $_{1}(\Sigma)$
- In this 2 bin example both bins are very correlated.
 - The correlation structure of Y_1 and Y_2 is visualized as a 2D gaussian
 - All the randomly sampled points from this 2D gaussian show us the possible values of Y_i
 - By taking the weighted average, we can get mean and variance
 - GP is defined by a Mean function [m(x)] and a kernel matrix [K]
 - In our case we have a higher bin count, we define this covariance matrix using a kernel
 - We factor in the noise (as each observation inherent error) by taking $\Sigma(x_i, x_j) = k(x_i, x_j) + I\sigma_v^2$
 - $\cdot\,$ We do know the error on the each bin content, which is used in turn.
 - Using this Kernel, we can extrapolate prediction to any values of x

•

•

22

