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Abstract
In particle physics, precise simulations are necessary to enable sci-

entific progress. However, accurate simulations of the interaction pro-
cesses in calorimeters are complex and computationally very expensive,
demanding a large fraction of the available computing resources in par-
ticle physics at present. Usually, generative models interpret calorime-
ter showers as 3D images. This approach becomes difficult for high-
granularity calorimeters due to the larger sparsity of the data. In this study,
we use this sparseness to our advantage and interpret the calorimeter
showers as point clouds. A first model to learn calorimeter showers as
point clouds is presented. The model is evaluated on a high granular
calorimeter dataset.

Model

The model here described is based on PointFlow [4] and consists of three
sub-models.
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The z-representation is enriched with the number of all hits nhits and the
transformed total energy of the hits Esum. Both flows are conditional normal-
izing flows, based on rational quadratic spline (RQS) coupling layers[1]
and ResNet[2] conditioners. The Point Flow transforms each point xi sepa-
rately, it is conditioned on the latent variable z. The Latent Flow is conditioned
on the energy Ein.

Shower generation:
• sample large number of points (10k) + probabilities
• average probability in each cell
• sample nhits cells without replacement
• sample energies for picked cells

Dataset

The CLIC Calorimeter Dataset [3] was used. The dataset consists out of
800k events. Each event contains the simulated energies measured by the
(51 × 51 × 25) scintillator cells. This energy is the result of the electromag-
netic shower coming from a single electron traveling at a fixed angle through
the calorimeter. The initial energy of this electron is uniformly distributed
between 10 − 510 GeV. The voxel dataset is transformed into a point cloud
dataset.

Results and Discussion
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The average shower profile in all directions are shown. The results of the
direct density of the model and the results after sampling from the model are
compared with the simulation data. It can be seen that the model produces
matching results, but the tails of the distributions are not well represented by
the sampling.
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Three statistics of the showers are compared. The first two show that both
the number of cells hit and the sum of the energy in the cells agree well
with the results of GEANT4 - both for the direct density of the model and for
the sampled results. The right graph shows the individual cell energy distri-
bution. There are significantly fewer low-energy hits after sampling. This is
consistent with the decrease in the tails.

Conclusion and Outlook

The results of the model appear promising. Except for the tails, the model
generates showers of a high quality. A possible further development to get
the problems of the model at the tails under control would be the use of a post-
processing network. We are currently investigating the model’s performance
on other datasets. This will be part of another publication.
Overall, the model shows good results and can overcome the problems of

voxel based models.
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